《倍数和因数》教学设计优秀8篇
作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。一份好的教学设计是什么样子的呢?它山之石可以攻玉,以下内容是众鼎号为您带来的8篇《《倍数和因数》教学设计》,在大家参考的同时,也可以分享一下众鼎号给您的好友哦。
《倍数与因数》教案 篇一
设计说明
《数学课程标准》指出:学生是数学学习的主人,教师只是学生学习的组织者、引导者和合作者。本课主要是在教师的引导下,让学生通过自主探索、合作交流、归纳总结的方式获得新知,这样真正做到把课堂还给学生,让学生真正成为学习的主人。本课教学在设计上主要有以下特点:
1.新课伊始,利用学生熟悉的生活中人与人之间关系的情境引入,不仅可以激发学生学习的兴趣,同时还能使学生初步感知事物之间的关系是相互依存的,为学生探究新知奠定基础。
2.结合运动会上两个班排出的队形图列出乘法算式来认识倍数与因数。使数学教学紧密联系学生的生活实际,有效地激发学生的学习兴趣,使学生积极主动地参与到学习中去。本环节设计小组自学活动,让学生在小组内完成对倍数与因数的`认识。学生通过阅读、质疑、交流,逐步形成自学能力,体验到自主学习的快乐。
3.在小组内交流判断谁是7的倍数,通过合作交流让学生掌握不同的方法,以开发学生的创新思维。
课前准备
教师准备PPT课件百数表
教学过程
⊙创设情境,导入新课
师:同学们,我们人与人之间存在着各种关系,谁能说一说自己与爸爸的关系是什么?
生1:父子关系。
生2:父女关系。
师:那么你们与老师又是什么关系呢?
生:师生关系。
师:能说老师是师生关系吗?
生:不能。
师小结:是啊,人与人之间的关系不是独立的,是相互依存的。在数学王国里,也有一些存在着相互依存关系的数,它们就是倍数与因数。(板书课题)
设计意图:让学生知道数学知识的学习离不开生活,通过生活中人与人之间的关系引入,初步感知关系是相互的,同时使学生感受到数学与生活的联系,从而激发学生学习数学的兴趣。
⊙自主探究,合作交流
1.认识倍数与因数。
(1)课件出示教材31页第一个问题。
师:仔细观察两个班的队形,请你算一算两班各有多少人。
(2)交流计算结果。
9×4=36(人) 5×7=35(人)
(3)回顾乘法算式各部分的名称。
师:请你们说一说这两个算式里各部分的名称。(学生任选一题,说出各部分的名称)
师:这两个乘法算式里就有我们今天要研究的内容。现在请同学们自学教材31页“认一认”,并思考下面的问题。(课件出示教材31页第二个问题)
思考:①读了智慧老人的话,你知道了什么?
②关于倍数与因数,你发现了什么?
预设生1:在算式9×4=36中,36是9和4的倍数,9和4是36的因数。
生2:在算式5×7=35中,35是5和7的倍数,5和7是35的因数。
生3:倍数与因数指的是乘法算式中积和乘数之间的关系。
生4:在学习倍数与因数时,只在非0自然数范围内研究。
(4)质疑:在算式5×7=35中,能说5和7是因数,35是倍数吗?为什么?
学生讨论后师指出:倍数与因数是两个数之间的关系,是相互依存的。叙述时一定要说清楚谁是谁的倍数,谁是谁的因数。
《倍数和因数》教学设计 篇二
【教学内容】
人教版数学五年级下册P12一14,练习二。
【教学过程】
一、操作空间,初步感知。
1、同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2、学生动手操作,并与同桌交流摆法。
3、请用算式表达你的摆法。
汇报:1×12=12,2×6=12,3×4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1、理解因数和倍数。
(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数
(2)用因数和倍数说说算式1×12=12,2×6=12的关系。
(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2、求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:
①可独立完成,也可同桌合作。
②可借助刚才找出12的所有因数的方法。
③写出36的所有因数。
④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。
(3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3、求一个数的倍数。
(1)3的倍数有:——,怎样
有序地找,有多少个?
找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o
【评析】
由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4、发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】
通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。
师生共同总结:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的因数和倍数,应有序思考。
四、拓展空间,应用新知。
1、15的因数有:——,15的倍数有:——。
2、判断。
(1)6是因数,24是倍数。( )
(2)3.6÷4=0.9,所以3.6是4的因数。 ( )
(3)1是1,2,3,4?的因数。 ( )
(4)一个数的最小倍数是21,这个数的因数有1,5,25。( )
3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
4、举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
【评析】
本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。
【反思】
本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思
维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。
在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。
整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。
《倍数与因数》教案 篇三
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养同学自主探索、独立考虑、合作交流的能力。
3、培养同学敢于探索科学之谜的精神,充沛展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
同学独立考虑,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的长方形?
同学各自独立考虑,想像后举手回答。
3、师:同学们再想一下,假如有12个这样的小正方形,你能拼出几个不同的。长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,假如给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
同学几乎是异口同声地说:会越多。
师:确定吗?(引导同学展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。
先让同学小组讨论,然后全班交流,师根据同学的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
同学独立考虑后,在小组内进行交流,然后再全班交流。
引导同学总结质数和合数的概念,结合同学回答,教师板书:(略)
6、让同学举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让同学独立考虑,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让同学考虑着它是不是质数。
师:要想马上知道73是什么数还真不容易。假如有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想方法找出100以内的质数,制成质数表?谁来说说自身的想法?(让同学充沛发表自身的想法。)
2、让同学动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
《因数与倍数》小学教案 篇四
学习内容:
人教版小学数学五年级下册第17、18页。
学习目标:
1、我能掌握2、5的倍数的特征,并利用特征判断一个数是不是2、5的倍数。
2、我知道什么是奇数和偶数。
学习重点:
了解2、5的倍数的特征及奇数和偶数的含义。
学习难点:
能正确地求出符合要求的数。
学前准备:
收集电影票。
教学过程:
一、导入新课
二、检查独学
1、互动,检查独学部分第1、2题完成情况。
2、质疑探讨。
三、合作探究
(一)2、5的倍数的特征
1、小组合作。
仔细回顾独学题2,再与同伴分享自己的收获。
2、小组代表展示汇报。
3、小组合作交流,验证规律。
讨论:是不是所有2的倍数个位上都是0、2、4、6、8?所有5的倍数个位上都是5或0呢?
我们的想法:
小组代表汇报、总结。
4、试试身手。
(1)独立完成第18页“做一做”。
(2)集体交流。我又发现了 :
(二)奇数和偶数
1、自主阅读教材。根据自学内容,我知道:
根据是否是2的倍数,可把自然数分为 和 两类。是2的倍数的数叫做 ,不是2的倍数的数叫做 。
2、组内交流,并讨论:0是不是2的倍数?为什么?
3、汇报总结。
4、我能说出身边的奇数和偶数。
5、做一做(第17页)。
《因数与倍数》小学教案 篇五
教学目标:
1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。
2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:
理解因数和倍数的意义
教学难点:
因数和倍数等概念间的联系和区别。
教学过程:
一、认识因数与倍数,预习反馈
1、反馈主题图,根据主题图的不同情况写出乘法算式和除法算式。
反馈:
1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3
2、观察并回答。
(1)这三组乘法、除法算式中,都有什么共同点?
(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?
(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。
请看教材12页,2和6与12的关系还可以怎么说?
(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?
(5)提问:能不能说12是12的因数呢?
(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。
3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?
谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?
4.讨论:0×3 0×10 0÷3 0÷10
提问:通过刚才的计算,你有什么发现?
5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2) 这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。
二、巩固新知
1.下面每一组数中,谁是谁得因数,谁是谁得倍数?
16和2 4和24 72和8 20和5
2.下面得说法对吗?说出理由。
(1)48是6的倍数
(2)在13÷4==3……1中,13是4的倍数
(3)因为3×6=18,所以18是倍数,3和6是因数。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4、完成P15第2题
学生自己独立完成,讲评时让学生说一说,是怎么想的?
三、思维训练
1、判断
(1)12的因数有:1、2、3、4、6、12。
(2)整数32的因数共有4个。
(3)自然数a的最大因数是a,最小因数是1。
(4)一个数的因数都小于这个数。
2.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。
(1)( )是4的倍数 (2)( )是60的因数
(3)( )是5的倍数 (4)( )是36的因数
四、课后小结:
五、 布置作业
《因数和倍数》数学教案 篇六
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
精简概念,减轻学生记忆负担。
四、方面的调整:
A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
五、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
六、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。
《因数和倍数》数学教案 篇七
教学目标
让学生能利用最大公因数知识解决生活中的实际问题。
教学重难点
教学重点
利用最大公因数知识解决生活中的实际问题。
教学难点
利用最大公因数知识解决生活中的实际问题。
教学工具
课件
教学过程
一、导入新课
1. 什么是公因数?什么是最大公因数?
2. 找出每组数的最大公因数。
5和15 21和28 30和18 8和9 11和33 12和42
过渡:在现实生活中,有的问题需要用最大公因数的知道来解决,这就是我们今天要学习的内容。
二、新课教学
出示教材第62页例3。
(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。
(2)学生以小组为单位,探究如何拼摆。
每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。
教师巡视指导,辅导学生。
(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。
(4)教师:应该怎样选择方砖来铺地呢?
通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。
(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1 dm、2 dm、4 dm的地砖,边长最大的是4dm。
三、巩固练习
1.教材第63页练习十五第5题。
此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。
2.教材第63页练习十五第6题。
此题也是有关两数最大公因数的实际问题,“要使每排的人数相等”则每排的人数必须既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。
3.教材第64页练习十五第9题。
此题检查学生当两数是倍数关系、互质关系、一般关系情况下求最大公因数的能力。
参考答案:
5.长方形的边长是70和50的最大公因数是10 cm,所以小正方形的边长最长是10cm。
6.每排人数是36和48的最大公因数,是12人。
男生:48÷12=4(排) 女生:36÷12=3(排)
9.(1)A (2)C (3)C
四、课堂小结
今天你学习了什么?有什么收获?
五、布置作业
教材第64页练习十五第7、8、10题。
《因数与倍数》小学教案 篇八
教学目标:
1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。
2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。
3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。
教学重点:
掌握倍数和因数等相关概念,以及应用概念判断、推理。
教学难点:
理解相关概念的联系和区别。
教学过程:
一、揭示课题
1.回顾知识。
提问:上节课,我们已经复习了整数和小数的有关知识。
在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?
结合学生交流,板书。
2.揭示课题。
引入:这节课,我们复习因数和倍数的相关知识。
通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。
二、基本练习
1.知识梳理。
提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?
学生回顾,交流,教师适当引导回顾。
提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?
根据学生回答,板书整理。
2.做练习与实践第10题。
学生独立完成,指名板演。
集体交流,让学生说说找一个数的因数和倍数的方法。
3.做练习与实践第11题。
出示题目,学生直接口答。
提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?
追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。
4.做练习与实践第12题。
学生先独立写出质数和合数,再指名口答。
追问:最小质数是几?最小的合数呢?
读书破万卷下笔如有神,以上就是众鼎号为大家带来的8篇《《倍数和因数》教学设计》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。