《比的认识》教案设计【优秀7篇】
在我们平凡的学生生涯里,大家对知识点应该都不陌生吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点有助于大家更好的学习。这次众鼎号为您整理了7篇《《比的认识》教案设计》,希望能够对困扰您的问题有一定的启迪作用。
认识比 篇一
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义
难点:理解比与分数、除法的关系
教学准备:多媒体课件
教学过程:
一、创设情境,导入新课
你知道这是什么时候拍的照片吗?对,贸易节的情景一定还深深的留在大家的记忆里,数码相机把这一刻给定格了。我把这张照片放在方格纸当中,下面有两幅放大后的照片,哪一幅没有改变原来的形状呢?对。我们去照相馆放大照片,只是改变照片的大小却没有改变照片的形状,这里就蕴含着一个数学的问题,也就是我们将要学习的新知识比,今天我们就来具体研究它。(板书:比)
二、教学例1。
1、出示例1。
提问:果汁与牛奶杯数之间的关系,可以怎样表述呢?
师:我们已经会用减法比较两个数量之间的相差关系,也会用分数或除法比较两个数量之间的倍数关系。其实,两个数量之间的关系还可以用比来表示。
2.教学例1
用比怎样表示“2杯果汁”和“3杯牛奶”这两个数量之间的关系呢?请同学们自学例1,把你认为重要的地方多读两遍。
(1)学生自学课本
(2)学生汇报。板书:
果汁与牛奶杯数的比是2比3 记作2:3
牛奶与果汁杯数的比是3比2 记作3:2
(3)质疑
你有什么不明白的地方或者需要向大家提醒的吗?
(老师有一个问题想请教同学们:同样是2杯果汁为什么在这里作为比的前项而在这里却作为比的后项呢?)
两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是哪个数量与哪个数量的比,不能颠倒两个数的位置。)
3、教学例1后的“试一试”
(1)出示例题,让学生尝试解答。
(2)学生汇报。
这里我们研究的都是两个相同数量的比,在日常生活中我们还会遇到很多不同数量的比。
4、教学例2
(1)出示例题后,让学生填表。
(2)你是根据什么数量关系求的呢?速度=路程÷时间,也可以用比来表示路程和时间的关系,怎么表示小军小伟所走路程和时间的比呢?
小军走的路程与时间的比是900:15
小伟走的路程与时间的比是900:20
(3)揭示比的意义。
由此你能发现什么?两个数的比表示什么?
(4)两个数的比就表示两个数相除,比的前项除以后项所得的商叫做比值。
(5)两个数的比表示两个数相除。两个相同数量的比表示它们之间的倍数关系,而两个不同数量之间的比的比值表示另外一个量。那你能说出总价与数量的比表示什么吗?工作总量与工作时间的比表示什么呢?
(6)你会求比值了吗吗?抢答。
通过例1例2的学习,我们对比、分数、除法之间有了一定的了解,请大家试着解决下面的问题。
5、教学例2后的试一试。
(1)学生独立完成
(2)引导观察:请大家观察三个等式,你有什么发现?比、除法、分数三者之间有什么联系呢?请把你的发现在小组内交流一下。请把你们的发现填在表格中。
(3)老师把这份表格填好了,谁来读一下?全对的举手,对三项的举手,对二项的。
(4)比与除法、分数有着密切的联系,我们已经知道除法中的除数,分数中的分母有什么要求呢?那在写比的时候要注意些什么呢?
(5)根据分数与除法的关系,比也可以写成分数的形式。读作3比5,这个比你会读吗?这个呢?
三、练习
1、口答练一练。
2、小组合作大比拼。下面我们进行小组合作大比拼环节。首先要求大家要共同合作完成。第二时间是二分钟,做好的就坐正,举起手来。看哪一组合作的最好。
汇报。第一小题全对的举手,第二小题全对的举手,第三小题……,三题都对的举手。你们是怎么合作的呢?
四、拓展练习
今天学习的知识你们都会了吗?接下来我们要运用所学的知识来解决一些实际问题。
1.比一比说一说
小强的身高是1米,他爸爸的身高是173厘米。小强说他和他爸爸身高的比是1:173。
对不对?你认为是多少?为什么这样改?
在比较两个相同量之间的关系时,应该按照统一的标准去比。
2.比一比做一做
同学们,请看这儿有两杯糖水。(电脑出示:两杯糖水,并标出糖和水重量的比:第一杯:1:20,第二杯:1:25)
(1)你知道哪杯水甜吗?谁来说一说?
(3)你能配制一杯和第一杯一样甜的糖水吗?
3、你能用比表示今天来这儿上课的男生人数与女生人数之间的关系吗?由这个比你还能想到些什么呢?
4、昨天老师要求大家找一找比在生活中的应用。请你说一说你找到了哪些?
五、总结
好,学到这里你有什么收获呢?那你能比的知识解释照片问题了吗?
六、了解黄金比
在拍摄照片,以及绘画的时候都会采用黄金比,这样会使作品达到最美的效果,你知道为什么吗?你听说过黄金比吗?那我们就来了解一下吧。(观看大屏屏幕)
七、课后延伸
今天我们学习了比,在日常生活中的应用非常的广泛。今天的作业第一就是请同学们课后找一找生活中有关比的应用的具体的事例。第二,利用黄金比画一幅优美的图画。
认识比 篇二
教材简析:这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。教学目标:1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。重点:理解比的意义难点:理解比与分数、除法的关系教学准备:多媒体课件、挂图、小黑板教学过程:一、谈话导入1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?设计意图:开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。二、教学例1(一)、呈现例1挂图:妈妈早晨准备了2杯果汁和3杯牛奶。1、利用旧知进行比较:(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)相差关系{牛奶比果汁多1杯 倍数关系{果汁的杯数相当于牛奶的2/3 果汁比牛奶少1杯 牛奶的杯数相当于果汁的3/2 (2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。2、“比”的教学:(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)3、“比”的读写:(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)(2)指导学生写:3比2怎么写呢?谁来写一写?(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项 后项)(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?4、比是有序概念(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。设计意图:例1 的教学首先抓住了两个环节:首先通过已有知识与经验使学生认识到用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在介绍比的各部分名称后,结合两个比的前后项的“不同”巧妙帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。(二)、完成试一试(出示安利瓶)在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)设计意图:通过引导学生参与讨论洗洁液与水体积之间关系的表示方法,使学生初步体会到比与除法、分数之间的内在联系。既利于后面教学比、分数、除法三者之间的关系,也有利于加深学生对比的意义的认识。三、教学例2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)1、 想一想,我们怎样求两人的速度?2、 2、学生计算答案,汇报填表。3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)(二)、理解比的意义1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比 两个数相除)2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)设计意图: 例2 通过教学两个不同类量的比,使学生进一步完善对比的认识。一方面通过题中的填表,使学生初步体会到速度是路程与时间比较的结果,再通过用比表示这一关系重点启发学生用自己的话来说一说,在描述比的意义时重点强调了比与除法的关系,在通过学生与教师的互动互说,共同领悟中使学生对比的意义有一个本质的理解。(三)、认识“比值”、及与“比”的区别:1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?3、 你能说出例1中的各个比的比值分别是多少吗?4、 讨论:同学们觉得比与比值的区别在哪里?(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)设计意图:比与比值是互相联系而又有区别的两个概念,在学生初步认识比值后就对这两个概念进行比较既有利于学生对两个概念的的理解和掌握,又为后继教学区分两种容易混淆的题型“化简比”和“求比值”奠定了基础。(四)、“试一试”1、 完成“试一试”:(学生独立完成,指名板演)2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)(五)、比、除法和分数的关系1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表) 相互关系区别比前项比号(:)后项比值 除法 分数 2、比的后项为什么不能是0?设计意图:高年级同学已经具有一定的探究解题能力,“试一试”后通过两个问题的讨论,帮助学生进一步明确比与分数、除法的关系。交流汇报时,也能根据学生的汇报顺序来指导教学,充分发挥学生的主观能动性,使学生对比的认识更加透彻,认知结构得以进一步完善。四、巩固练习1、 完成“练一练”的1、2、3小题。2、 判断题。(1)3/4只能读作四分之三。 ( )(2)比的后项不能是零。 ( )(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。 ( )3、 完成练习十三的第3、4题。4、 糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?(2)(出示第三杯糖水,标出糖4克,水100克。) 你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?5、 知识介绍:同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。设计意图:练习的设计层次清楚,形式活泼,沟通了知识间的内在联系,使学生经历了运用所学知识解决实际问题的过程,精美的课件展示“黄金比”令人赏心悦目。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。】五、总结:今天我们学习了什么?你们有什么收获吗?还有什么问题吗?六、布置作业:p72练习十三的1、2、3、5
认识比 篇三
教学内容:教科书第68~70页的例1、例2以及相应的“试一试”和“练一练”,练习十三的第1~5题。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:理解比的意义
教学难点:理解比与分数、除法的关系
教学准备:多媒体课件
教学过程:
一、 导入新课
1、 出示例1图:
妈妈早晨准备了2杯果汁和3杯牛奶
提问:果汁与牛奶杯数之间的关系,可以怎样表述呢?
师:好,刚才大家说的都对,看来我们都已经会用减法表示两个量之间的相差关系,也会用分数或除法表示两个量之间的倍数关系,其实,两个数量之间的关系还可以用比来表示。今天这节课我们就一起来认识比。(出示课题:比)
二、探索新知
1.教学例1
用比怎样表示“2杯果汁”和“3杯牛奶”这两个数量之间的关系呢?果汁的杯数是牛奶的2/3,也可以表示成果汁与牛奶杯数的比是2比3 记作2:3;同样的, 牛奶与果汁杯数的比是3比2 记作3:2。
“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
2:3是哪个数量与哪个数量的比?其中哪个是前项,哪个是后项?那3:2呢?
追问:同样是2杯果汁为什么在这里作为比的前项而在这里却作为比的后项呢?
小结:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是哪个数量与哪个数量的比,不能颠倒两个数的位置。
2、教学例1后的“试一试”
讨论:如果把每种溶液里的洗洁液看作1份,水分别可以看作几分?水的体积是溶液的几倍?(强调:4号溶液里的水和洗洁液的体积相等。)
提问:图中的四个比分别表示什么含义?这里的1 :8指的是谁与谁的比?学生一一口答。1:4 、1:3、1:1
师:这里我们研究的都是两个相同数量的比,在日常生活中我们还会遇到很多不同数量的比。
3、教学例2
(1)填表,说说是怎样列式的的
(2)你是根据什么数量关系求的呢?(速度=路程÷时间),
也可以用比来表示路程和时间的关系,怎么表示小军小伟所走路程和时间的比呢?
生:小军走的路程与时间的比是900:15
小伟走的路程与时间的比是900:20
师:由此你能发现什么?两个数的比表示什么?
(3)说明路程与时间的关系也可以用比来表示
(4)思考:900∶15表示什么?
(5)说明:比的前项除以比的后项得到的商就是比值。
小结:两个数的比就表示两个数相除,比的前项除以后项所得的商叫做比值。
两个相同数量的比表示它们之间的倍数关系,而两个不同数量之间的比的比值表示另外一个量。那你能说出总价与数量的比表示什么吗?工作总量与工作时间的比表示什么呢?
师:通过例1例2的学习,我们对比、分数、除法之间有了一定的了解,请大家试着解决下面的问题。
4、教学例2后的试一试。
(1)学生独立完成
通过这道题目我们发现比与除法和分数之间有着密切的联系,因此两个数的比也可以写成分数形式。例如:320:2可以写成320/2,仍读作320比2。(注意:它的写法与读法和分数是不一样的。)
(2)引导观察:请大家观察三个等式,你有什么发现?比、除法、分数三者之间有什么联系呢?
既然比与除法和分数之间有着密切的联系,那么想一想,比的前项、后项和比值分别相当于除法算式或分数中的什么?比的后项可以是0吗?(四人小组讨论,并把你们讨论的结果记录在练习纸上。)
汇报。教师注意纠正。
问:有没有简单的表示方法呢?(出示表格)
除法
被除数
÷
除数
商
分数
分子
-
分母
分数值
比
前项
:
后项
比值
问:通过上表想想看,比的后项可以是0吗?
教师总结:因为在除法中除数不能为0,分数中的分母不能为0,因此比中的后项也不能为0。
(3)还有比表格更简单的表示方法吗?(介绍用字母表示的方法)
a:b=a÷b=a/b (b≠0)
三、巩固练习 p70页 练一练1~3题
第一题,问:怎样求比值的?
第二题,强调:比值可以是分数、整数和小数。它表示的是一个数值。 这里总价和数量的比的比值实际就是它们的单价。
第三题,搞清楚比和除法、分数之间的关系。
四、拓展练习
做练习十三1~5题
“认识比”修改稿
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义
难点:理解比的意义
教学准备:多媒体课件
教学过程:
一、教学例题1,初步认识比
(一)复习导入
(1)呈现例1图(2杯果汁和3杯牛奶)。提问:如果将果汁的杯数与牛奶的杯数进行比较,结果怎样?怎样列式?
(根据学生回答,课件演示,教师整理板书:)
相减——( )比( )多(或少)( )
3-2=1
相除—— ( )是( )的( )
2÷3=2/3
3÷2=3/2
(2)小结:两个数量相比较,既可以用减法表示两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。
(3)导入:初了这两种表示方法外,还有一种表示方法,想学吗?如有学生表示知道的,可以让学生来介绍介绍,再让所有学生看书验证这个学生所说的是否正确。如果学生原来不知道,可以让学生看书自学。
(二)初步认识比:
(1)指名介绍:还可以怎样来说?(学生介绍,师指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。
(2)想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
(3)小结:看来,如果两个数量之间的关系可以用分数来表示,那么这两个数量间的关系也可以用比来表示。(板书:( )与( )的比是几比几)
(4)通过看书自学,你还知道了些什么?结合学生交流,认识比各部分名称,读法、写法。
(三)认识比是有序概念
为什么果汁与牛奶杯数的比是2:3而牛奶与果汁杯数的比是3:2呢?
对!两个数的比是有顺序的。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量的比是几比几,不可颠倒顺序。
(四)巩固练习
1、 出示练习十三第1题
(1)要求学生用比来表示
(2)组织交流,并让学生说说是怎样想的?
(3)小结:要填一个数量与另一数量的比是几比几,你是怎样想的?(只要看这两个数量分别有这样的几份,就是几比几。)在填的时候要注意什么?(要按问题的叙述顺序来说,不能颠倒位置)
2、出示试一试
(1)在日常生活中,用比表示两个数量之间的关系的现象还有很多,比如洗洁液,上面的使用说明就是用比来表示的。在这几个比中,是哪两个数量在比较?(学生默读题目后回答)
(2)每一个烧杯上面的比分别表示什么意思?谁来解释一下?(学生可以用份数叙述,也可以用分数叙述,要求两种理解都要到位)
3、小结:看来,如果两个数量之间的关系可以用比来表示,那么这两个数量的关系也可以用分数来表示。
二、教学例2,理解比的意义
(一) 教学例2
1、呈现例2题目,学生阅读题目后提问:根据这些信息我们可以求出什么?
2、我们怎样求两人的速度?(用除法:路程÷时间=速度)
3、根据这两个信息能像例题1那样提出用减法计算的问题吗?能提出( )是( )的几分之几这样的问题吗?为什么?引导学生理解刚才是两个同类量在比较,现在是两个不同类量在比较,两个不同类的量进行比较,可得到一个新的数量,在这里:路程÷时间=速度。
4、请男生计算小军的速度,女生计算小伟的速度。学生汇报,课件演示。
5、说明:在这里速度表示的是路程与时间的关系。而这种关系也可用比来表示。谁会说?(学生口答,教师出示:小军走的路程与时间的比是比是900∶15。小伟走的路程与时间的比是比是900∶20)
(三)理解比的意义
1、仔细观察例题1、例题2中的比,你觉得比与什么有关?两个数的比表示什么?同桌可讨论讨论。
2、组织交流,得出:比与除法(分数)有关,两个数的比表示两个数相除。
(出示结论:两个数的比表示两个数相除)
三、认识“比值”
1、在900∶15这个比中,比的前项是几?后项是几?
我们把比的前项除以后项所得的商叫做比值。那么这个比的比值是多少?
2、那么900∶20这个比的比值是多少?
3、 你能说出例1中的各个比的比值分别是多少吗?
4、观察这些比值,我们发现比值可以是整数、也可以是分数,还可以是小数。比值是一个数。
四、探索比与分数、除法的关系
1、我们已经知道除法与分数有关,(出示表格)。那么比与除法、分数有什么关系呢?请大家仔细观察板书,同桌商量,看着表格说一说。
联 系 不 同 比 前项 比号 后项 比值 表示两者关系 除法 被除数 除号 除数 商 是一种运算 分数 分子 分数线 分母 分数值 是一个数
同样:比的后项可以是0吗?为什么?
2、书写比时,一般写成( ):( )的形式,根据比与分数的关系,比也可以写成分数形式,比如:2:3可以写成2/3,教师边板书,边读。所以2:3只表示比,但2/3既可以看作比,也可看作比值。当2/3表示比时,读作2比3,当表示比值时,读作三分之二。
五、巩固练习
1、认识黄金比:
这里三个不同形状的照片相框,如果让你选的话,你选哪个相框来放自己的照片?为什么?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)为什么大家都认为第二幅比较美观呢?你能算出这幅画短边与长边的比值吗?(学生算出短边与长边的比值大约是0.618)听说过黄金比吗?黄金比的比值大约是0.618。其实呀,长方形长与宽的比值接近0.618的,这样的长方形,被认为是最美的长方形。
出示中华人民共和国国旗图,中华人民共和国国旗法规定,国旗的长和宽的比是3:2,也就是宽与长的比是2:3,比值是2/3,比较接近黄金比。
2、出示方格纸与题目:在方格纸上画几个大小不同的长方形,使长方形的长与宽的比都是2:1。
学生读题后独立画,展示学生作品,提问:只要怎样画,就能确保长与宽的比是2:1?
3、糖水的甜度
(1)(出示:三杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)
第三杯1∶40 你知道哪一杯水更甜吗?为什么?
(2)(出示第四杯糖水,标出糖10克,水100克。)
现在哪杯糖水更甜?
(3)根据糖与水的比,我们还能知道谁与谁的比?是多少?你是怎样想的?
六、总结:
通过今天的学习,你有哪些收获?
附板书设计:
认识比 (两个数的比表示两个数相除)
相减
3-2=1
相除 比
2÷3=2/3 2 : 3 = 2/3
前 比 后 比
项 号 项 值
3÷2=3/2 3 : 2 = 3/2(1.5)
900÷15=60 900 : 15 = 60
900÷20=45 900 : 20 = 45
《比的认识》教案设计 篇四
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学过程:
一、情境导入
1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?
预设可能提出的问题:
(1)周长和面积
(2)长比宽多几米?
(3)宽比长短几米?
(4)长是宽的几倍?
(5)宽是长的几分之几?
师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。
二、共同探讨,学习新知
(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。
(2)交流小结:
板书:长和宽的比是3比2,记作3:2
宽和长的比是2比3,记作2:3
(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?
(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)
(二)、完成试一试
在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现试一试)
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例2
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)
1、 想一想,我们怎样求两人的速度?
2、 2、学生计算答案,汇报填表。
3、明确:因为速度=路程时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识比值、及与比的区别:
1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?
我们把比的前项除以后项所得的商叫做比值。
2、说说这几个比值分别表示什么?
3、 讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、试一试
1、 完成试一试:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)
师:像上面那样,(板书)两个数相除,又叫做两个数的比。
如6/4,写作6:4 读作6比4
比号
6是这个比的前项,4是这个比的后项,1.5 是这个比的比值。
读一读。 写一写。(第51页练一练第一题。)
三、 练一练。(第51页练一练第二题。)
四、 说一说,全课总结。
今天我们认识了比,说一说你学到什么知识?
生活中还有哪些比的例子?有什么新问题?
(三)
教学目标:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关系,明白比的后项不能是0的道理,同时懂事物之间是相互联系的。
3、进一步培养学生分析、比较、归纳、概括能力和自主学习的能力。
教学重点:理解比的意义,比与分数、除法的关系。
教学难点:理解比的意义
教学过程:
比的意义:
同类量的比
问: 谁来向听课的老师介绍一下,我们班级的人数情况。
男生有多少人?女生有多少人?(板书)
如果把我们班的男生人数和女生人数放在一起比一比,可以得出什么结论?
男生人数比女生人数少?
你能用一个式子来表示吗?
板书:用减法。27-19
从这个式子里,还可以得出什么结论?
女生人数比男生人数多
问:除了减法之外,你还能想出其它比较的方法吗?
可以算出什么?
板书:男生人数是女生人数的几分之几?女生人数是男生人数的多少倍?
会列式吗?
19/2727/19
说明:像这样用除法对两个量进行比较时,还有一种新的表示方法:比。(板书课题)
问:求男生人数是女生人数的几分之几,是哪个量和哪个量比较?
像这样的求男生人数是女生人数几分之几,又可以说成男生和女生人数的比是19比27
谁来说一说,求男生人数是女生人数几分之几还可以怎么说?(学生重复一遍)
请同学们再看一看,求女生人数是男生人数的几倍,是哪个量和哪个量比较?
根据上面的例子,想一想,女生人数是男生人数的几倍还可以怎么说呢?
27比19
通过上面的例子我们知道,谁是谁的几倍或几分之几,都可以说成谁和谁的比。
2、不同类量的比
说明:在日常生活中,对两个数量进行比较的例子还有很多。例如在路上行驶的汽车。
出示:一辆汽车2小时行驶90千米。
你能把什么算出来?
也就是汽车的速度。列式:90/2=45(千米)
同学们请看,求汽车的速度,实际上是用哪两个量进行比较?
那么汽车的速度又可以说成谁和谁的比?
启发学生:汽车的速度又可以说成路程和时间的比是90比2
常见的数量关系里,因为单价=总价/数量,所以单价可以说成是谁和谁的比?
工作效率可以说成是谁和谁的比?
3、揭示比的意义:
刚才的这些例子在列式时有什么共同的地方?
都是用除法来计算的
都可以说成谁和谁的比是多少?
由此可见,两个数的比是表示两个数之间的什么关系?
对,具有相除关系的两个数量进行比较时,都可以说成两个数的比。
5/8可以说成谁和谁的比?15/26呢?
4、反馈练习:
出示一面国旗。长是5分米,宽是3分米。
根据上面的信息,你能说出哪些比?
二、自学比的其它知识
通过上面的学习,同学们已经理解了比的意义,在教材的52-53页,
还涉及到了一些关于比地其他知识,能自己研究解决吗?
学生自学3分钟
谁来汇报一下,通过看书自学,你又了解了有关比的什么知识?
学生可能从以下几个方面进行汇报:(可不按顺序)
各部分的名称
在写比号时,有什么要提醒大家的。
说出下面每个比的前项和后项,并求比值。
14:21 5/90。5:2。52/9:1/3
比的分数写法。
把下面的比改写成分数形式。
25:10021:18
比同除法、分数的关系。
列表出三者的关系
引导学生:比的后项有限制吗?为什么不能是0。
足球比赛中为什么会出现2:0这种写法呢?
刚才我们说了比、分数和除法之间的联系。那三者又有什么区别呢?
可让学生讨论。
小结:比是两个数的除法的关系;分数是一个数;除法是一个运算。
三、巩固练习:
看来同学位自学的效果很不错,老师这里还有几个小问题请同学们帮忙解决一下。
1、填空:
小华家养了12只鸡,9只鸭。
鸡和鸭只数的比是,比值是 。
鸭和鸡只数的比是 ,比值是 。
买3千克苹果用了7.5元。
买苹果的总价和数量的比是 ,比值是 。
2、练习十二第1题。
3、小强的身高是1米,他爸爸的身高是173厘米。小强说他和他爸爸的身
高的比是1:173。小强说的对吗?
4、用一辆汽车运货,上午运了5次,共运20吨;下午运了6次,共运24吨。
你提出哪些有关比的问题?
四、本课小结。
这节课学习了什么?通过学习你有哪些收获?
认识比 篇五
一、教学背景分析:
1、 教学内容分析:本课是苏教版国标本第十一册第五单元“认识比”的起始课,在遵循教材编写原理的基础上,对教学题材进行了重组,提供现实背景,改变呈现方式,让学生在充分参与解决问题的过程中,学会合作、学会表达、学会交流,更好地帮助学生理解知识,形成技能,发展思维。
2、学生情况分析:学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的联系。
二、教学目标:
1.让学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2.使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3.让学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,在学习过程中领略到发现的乐趣与数学的美。
三、教学重点:理解比的意义,理解比与分数、除法的联系。
四、教学难点:经历建构比的意义的过程,形成初步的探究意识。
五、教学过程:
(一)积累丰富的感性材料,帮助学生理解概念。
比的意义在教学中既是重点也是难点,同时这个意义概括得又比较抽象,学生很难用自己的语言表达出什么叫做比。为了让学生能真正体会到两个数的比表示两个数相除,在教学时,我设计了一些各有侧重点,同时又互相关联、循序渐进的例题。在学生对比有了丰富的感性认识后,再概括比的意义,这样有利于学生真正理解比的意义。
1.教学“同类量的比”,分四个层次进行。
首先利用学生感兴趣的动画片——大头儿子和小头爸爸的身高,引导学生对两个同类量进行比较,学生通过已有知识与经验认识到,用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。
其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在理解9比17和17比9的不同意义时,帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。
接着,我请学生利用课前谈话中提到的身高信息,结合卡通人物的身高,再来说说比。一是给学生说的机会,让他们会说谁与谁的比,二是引导学生发现,同类量的比较先要把单位统一以后才能比。
最后,让学生举一反三,列举生活中比的例子,通过交流,让学生感受比在实际生活中的运用。
2.教学不同类量的比。
通过体重与身高的比来引入,让学生初步体会到两个不同类量间的关系也可以用比来表示,然后再举路程与时间的比,进一步完善对比的认识。最后通过观察板书,让学生概括出两个数的比表示两个数相除这一意义。
(二)放手让学生自学,引导学生学以致用。
本节课的学习内容较多,不仅要让学生理解比的意义,还要学会比的读写、比各部分的名称、求比值的方法以及比、除法和分数之间的关系等,这么多的内容,如果全部由老师教给学生,就会显得多、杂,并且枯燥。考虑到这些内容的难度不大,学生能够通过看书自学解决问题,所以在教学完比的意义后放手让学生自学,让学生在小组里交流所学所想,这样不仅能培养学生的自学能力,而且能拓展课堂的宽度,同时也使教学重点得到强化。
在交流时允许学生无序交流,但对应的练习要相机出示,让学生运用所学知识去解决问题,发展他们的能力。比与除法、分数的联系,我是引导学生通过回忆、观察、思考、讨论等活动来完成的,在交流完比的后项不能为0 后,让学生分析“一场足球比赛,两个队的比分为2比0。”这个比与我们今天学的比相同吗?它的后项为什么可以是0?让学生从矛盾、冲突中领悟两者的差别。又如巩固练习第一题,书中将它放在例1的下面进行教学,目的是让学生初步体会到比与除法、分数之间的内在联系,但从学生的实际情况来分析,这是有一定难度的,所以此处进行了重组,将它放到交流完比、除法和分数的关系之后,这样处理既巩固了这三者的关系,又加深了学生对比的意义的认识。练习第2题,一方面巩固新知,另一方面在汇报过程中,发现比与比值的不同,引导学生寻找比值可以是分数、整数,也可以是小数。
(三)结合学生的生活实际,培养学生的应用意识。
抓住契机,结合学生身边的事物进行教学,有利于学生的发展。在最后的实践运用中,主要联系人身体上的数学问题来展开研究,让学生在观察、估计、实践中欣赏到数学的美,体会到数学的价值所在。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。我设计了以下四个环节:
1.读一读,了解人身体上的两个1比1,由于比较易懂,所以请学生自由读,借此机会活动一下。
2.体重与身高的比。在前面的新课教学中已经涉及这一知识,但前面只是初步理解体重与身高也能用比来表示,这时再次让学生计算体重与身高的比值,使学生深切感受到比和比值的意义。
3.头长与身高的比。先让学生看夸张的漫画,在笑的过程中回味、探索人体的比例,此时相机介绍不同时期人的头长与身高的比。
4.黄金比。借助多媒体的图、文、声、色来展示迷人的“黄金比”,令人赏心悦目。这个过程既加深了对比的意义的理解,又使学生积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。
《比的认识》教案设计 篇六
教学目标:
(1)经历实践操作与观察,认识钟面、时针和分针,学会看整时。通过活动,让学生体验数学与日常生活的密切联系,体会到学习数学的乐趣;提高学习数学学好数学的信念。
(2)通过操作、观察、分析、推理等活动,培养学生主动参与探究的精神。
(3)能用所学知识,合理安排自己的时间,做时间的主人。
教学重点、难点:
教学重点:正确读写钟表上的整时。
教学难点:正确迅速说出或拨出钟面上的时间。
教学过程
一、猜谜语引入
1、猜谜:一匹马儿三条腿,日夜奔跑不喊累,嘀嘀嗒嗒提醒你,时间一定要珍惜。学生猜谜得出:“钟表”
2、说说在日常生活中闹钟有什么作用?学生回答闹钟的作用。
3、揭题:老师收集了各种各样的钟表请大家一起看。在这些表中,其中这几个钟表上都有一个钟面,那么我们今天就先来一起认识钟面。
1(板书:认识钟面)
二、动手操作、交流、探究新知。
(一)认识钟面。请你们像名侦探柯南一样,仔细观察老师这儿的钟面,看钟面上都有什么?学生观察钟面,也许会发现钟面上有两根针,又粗又短的是时针,较细较长的是分针,有12个数字。
(二)认识整时
1、[教师出示钟面]:请学生观察,现在表示的时刻是几时?学生观察得出:现在表示2时。
2、教师追问,你是怎么知道的?引导学生观察几个整时钟面得出:分针指向几。
3、照学生说的方法,让大家再说钟面上的时刻。学生操作。也许会有两种拨法:一种先拨时针,一种先拨分针。
4、教师利用大屏幕,再出示几个时刻,检查学生掌握的情况。学生独立说、同桌互说。
5、出示几个整时钟面,让学生观察整时时,分针指向几?
6、动手操作:在钟面上拨出几个整时。
(三)学习时刻的另一种表示方法。
1、在我们日常生活中,除了有用分针时针表示时间外,还有另外一种表示时间的方法。你知道吗?让学生引出:电子表、电视机等上也能显示出时间。
2、教师追问:电子表怎么显示时间的?学生观察得出:电子表的表面有两个点,左边是几时,就表示几时,右边是几时,就表示几分。
3、联系生活实际:像电子表显示的这种表示时刻的方法你还在什么
2地方见过?学生联系实际会说出电话显示器上、电视上、手机上等等。
4、让学生试写这种表示方法。
(四)掌握用上午、下午等词语表示时间。
1、根据桌上的这张图,马上写出这几学生独立试写,同桌相互观察,
反馈。个钟面显示的时间?学生独立试写。
2、小组内交流,你写的时间。学生交流,反馈。
3、观察你写的时刻,有什么发现?理由呢?学生也许会发现:有两个10时。因为一天中,时针要走两圈,所以有两个10时。
4、教师小结:一天时针在钟面上要走2圈,所以有两个10时,因此,要准确地表达时刻,还得用这些词语。引出:上午、下午等词。学生动手拨小闹钟,并用上午、下午等词语,表示时间说一句话。
5、实践操作:拨一个你最喜欢的时刻,并说说这个时刻你在干什么?
(七)全课小结
这节课你最成功的是什么?今天,我们学习了很多有关钟表的知识,希望你们今后不但要珍惜时间,还要合理利用时间,准确掌握时间,按时起床,按时睡觉,不浪费时间,做个遵守时间的好学生,能做到吗?
认识比 篇七
教学目标:1、理解比的意义,学会比的读写方法,认识比的各部分名称。2、比较比同除法,分数的关系,掌握求比值的方法,会正确求比值。。3、能联系实际应用比的意义提出问题,解决问题。4、提高学生观察、讨论、交流、归纳的能力,懂得事物之间是相互联系的。教学重点:理解比的意义,学会比的读写方法,认识比的各部分名称,掌握求比值的方法。 教学难点:比较比同除法,分数的关系。能联系实际应用比的意义提出问题,解决问题。教学过程:一、 谈话倒入今天这节课我们来--认识比(板书课题)。通过昨天的预习,你对比的知识有了哪些了解,你还需要了解哪些知识?同学们对比的知识有了不同程度的认识。这节课我们来进一步研究“比”。请同学们看黑板。二、 新授(一)教学例1:(挂图)1、认识比妈妈早晨准备了2杯果汁和3杯牛奶。看到这组信息,你能提哪些数学问题?(1) 牛奶比果汁多几杯?(口答)(2) 果汁比牛奶少几杯?(3) 果汁杯数是牛奶的几分之几?(4) 牛奶杯数是果汁的几分之几?果汁杯数是牛奶的几分之几?怎样列式?2÷3= 就是用----果汁杯数除以牛奶杯数(板书)师:果汁杯数和牛奶杯数之间的这种关系,除了可以用除法、分数表示,我们还可以用一种新的表示法—比来表示。可以说成:果汁与牛奶杯数的比是2比3。那么牛奶杯数是果汁的几分之几?怎样求呢?3÷2= 就是用牛奶杯数除以果汁杯数。还可以说成----牛奶与果汁杯数的比是3比2。2、比的写法及各部分名称2比3可以记作2:3。2叫做比的前项,:叫做比号,3叫做比的后项。请你在自备本上把“2比3”写下来。说说它的各部分名称。3、同样是2杯果汁,为什么有时是比的前项,有时又成了比的后项?小结:所以在比中,我们要看清谁和谁比,不能随便颠倒位置。否则,比表示的具体意义就变了。师:像这样的比你在生活中有没有见过?过渡:同学们找了许多生活中的比,说明数学知识与我们的生活实际是密切相关的。这些比表示什么,与我们今天研究的比是否相同,等会再下结论。3、练一练这是一瓶多用途清洁剂。加入不同数量的水后可以清洗不同的物品。现在老师来加水配制一杯溶液。操作:一瓶盖清洁剂,三瓶盖水。问:把一瓶盖清洁剂看做一份,三瓶盖水就看做几份?这时清洁剂和水的比是---1:3。说说它表示什么?这杯溶液太浓了,可以------加水。再加5杯水。这时它们的比又是多少呢?这个比表示什么?如果清洁剂和水的比是1:1,那么清洁剂和水的体积之间是什么关系?出示手中的杯子:这杯溶液能不能配制这样的溶液呢?你有什么办法?8瓶盖清洁剂看做一份,8瓶盖水看做一份。小结:比表示的有时是具体数量,有时是份数。(二)教学例2在日常生活中,对两个数量比较的例子还有很多。(出示小黑板)看黑板:请一生读题师:你会求他们的速度吗?小写的速度怎么样求?是多少?板书:900÷15=60米/分 路程÷时间=速度(在小黑板上书写)师:小伟的速度呢? 900÷20=45米/分师:因为 速度=路程÷时间 我们也可以用比来表示路程和时间的关系。(板书: www.1126888.com 路程 时间 小军的路程和时间的比是 900 : 15小伟的路程和时间的比是 900 : 20 小结:因为路程÷时间=速度 所以路程和时间的关系可以用比来表示师:在叙述中还有其它类似的数量关系,继续看:求出它们的单价,总价和数量的关系可不可以用比来表示呢?为什么?翻板:表格 总价数量单价苹果10.53 梨124 生:因为总价÷数量=单价,所以:总价和数量可以用比来表示。3.教学比的意义:指着板书讲:2÷3可以表示成2∶3 学到这里,请你说说看两个数的比可以表示什么?(不会,可指着板书讲)师:两个数之比表示两个数相除,那么2∶3可以表示为2÷3结果是2/3,我们把2/3就叫做是2∶3的比值(板书)讨论学生话中所见的比。900∶15的比值是多少呢?求出其它各比的比值。4.3∶2=3÷2=3/23是比的前项,到了除法中就成了——被除数:到了分数中就是分子(小黑板出示表格) 联系区别比前项(∶)比号原理一种关系除法 一种分数分数 一个数举例:a∶b=a÷b=a/b 分数、除法的关系真密切啊!例如:2:3也可写成 ,读作2比3,而不读作三分之二。5、讨论:比的后项可以是0吗?为什么?6、介绍黄金比五星红旗是我们的骄傲。教室上方挂着的五星红旗模型时刻提醒我们是中国人,要为中华之崛起而读书。现在请你从这三幅国旗模型的设计图中选出最漂亮的一幅来。难道这里也有比的知识吗?视觉效果最佳是因为(3)中宽与长的比值最接近“黄金比”的比值。我们把比值大约是0.618的比叫做黄金比。从古希腊以来一直有人认为把黄金比应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。其实在人体中也有黄金比的知识:从眉心开始,眉心的上部与下部长度的比值越接近黄金比,我们就说那个人长得很漂亮;从肚脐眼开始,肚脐上部与下部长度的比值越接近黄金比,我们就说那个人的身材很匀称。三、 全课总结识今天这节课你学习了什么,你学到了什么?
以上就是众鼎号为大家整理的7篇《《比的认识》教案设计》,希望可以启发您的一些写作思路。