高中数学教育案例【通用7篇】
进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。接下来是关于高一数学课堂教学设计案例的文章,希望能帮助到大家!这次漂亮的小编为亲带来了7篇《高中数学教育案例》,在大家参考的同时,也可以分享一下众鼎号给您的好友哦。
高中数学教育案例分析 篇一
摘 要:随着教学的深入,如何使学生接受复杂繁琐的内容是一个重要的问题,好的教学导入方法可以使学生很快地进入学习状态,不仅使学生成绩更快地提高,也提高了老师的教学进度。以下是介绍高中数学课堂导入的方法和教学实际案例的解析。
关键词:高中数学;导入;案例
中图分类号:G632 文献标识码:B 文章编号:1002-7661(20xx)30-150-01
课堂教学是一个完整而系统的过程,每一个关节都是至关重要的,任何一个环节出现差错都会影响到整堂课的教学质量和教学进度。一个好的开端可以使学生快速地集中注意力从而进入学习状态,使学生们的思维更加活跃、提高课堂效率和减轻老师的教学负担。下面通过介绍几种课堂上的教学方式和具体的案例来进行详细地阐述。
一、创新教学模式
1、激发学习兴趣
新鲜的事物对青少年具有很大的吸引力,老师只有在教学过程中摆脱古板的教学方式,不断地创新才能抓住学生的兴趣点。真正的优秀的教学方式可以使学生的思维快速随着教师的思维运转,因为面对着繁重的课业负担的高中生很容易对数学这一课程产生厌烦甚至放弃学习,只有学生从自身意识到学习的重要性和对数学产生学习的兴趣,才能真正地融入到高中数学的学习中。而一个好的开端则可以吸引学生的注意力,慢慢在喜欢上数学。面对传统的“填鸭式”教学,使用生动形象的直观方法则可以使学生对所学知识一目了然。例如在分析立体几何时,不要单纯地将一些计算公式或者规律直接告诉学生,应当画出立体几何的透视图或者展出相关的实物模型,有条件的情况下要求学生亲手制作一些模型,这样既增加了教学过程中的趣味性,又提高了学生的学习兴趣和动手操作能力。
2、由浅入深的推导
学习是一个循序渐进的过程,没有谁可以“一口吃成大胖子”。很多时候我们只能看到事物的表象,而其中的内涵则需要我们一步一步去挖掘。很多学生极易被表象所迷惑,如何正确地引导他们不会误入歧途就是我们教师要求掌握的教学手法之一。当学生在接触到一个新知识并对其有所了解后而沾沾自喜时,就需要引导他们向更深层次去探索,只有不断前进才能有所收获。假设在学习“对数”这节课时,可以这样导入:假设用一块厚度为0.1毫米的金属板连续对折三次,计算其厚度,如果连续对折五十次,其厚度能达到多少呢?如果在不借助计算工具的情况下,学生们通过乘法是很难在短时间算出正确的数值,这时学生们就需要一种新的算法来得到他们需要的答案。通过这种方式不仅激发了学生的求知欲,在大家畅所欲言的同时也使课堂气氛更活跃。
3、课前温习
在每天教授新知识前,应当先回顾一下上一堂课学习的内容,这样做的目的是为了使学生进一步巩固学习过的知识,同时还起到了承上启下的作用,为新授知识做一个铺垫,使学生更快地接受新内容,巩固旧的知识,在教学上实现“双赢”。
例如在学习证明立体几何平行或垂直关系这堂课时,老师可以先引入平行关系:包括线面平行和面面平行;垂直关系:线线垂直、线面垂直和面面垂直。同时在黑板上写下本堂课的关于四个判定和性质定理的学习内容,四个判断定理:1、若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2、如果一个平面内有两条相交直线都平行于一个平面,那么两个平面平行3、如果一个平面内的两条相交直线都垂直,那么该直线与此平面垂直4、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直;四个性质定理:1、一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行 2、两个平面平行,则任一个平面与这两个平面相交所得的交线相互平行 3、垂直于同一平面的两条直线平行 4、两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
将新知识与旧知识同时列在黑板上,使学生直观地认识到两者之间的联系,从而进行对比,不仅巩固了之前的内容,也对新知识有了更多认识,此时教师让学生再通过字面意思进行预习,将新旧知识相互联系后就会达到事半功倍的学习效果。
4、联系实际
数学同其他课程相比更为枯燥,所以如何使学生对数学产生兴趣则至关重要,将数学与生活实际相联系,使用应用题的形式就要比单纯的计算更富有趣味性,同时也可以在课堂上举行一些“谁最快最准确”的小比赛,使学生在做题时更有动力,活跃的课堂气氛会使学生的思维更加敏捷。
综上所述导入的方法是一堂课成功与否的关键,由此可以看出好的教育方法在学习中的重要性。
二、课堂教学经典案例解析
1、随着教育地不断发展,传统的教学方法已经越来越不能适应现在的教育了,以学习“数列”为例,如果在课堂上老师的提问方式不得当,例如在上课刚刚开始时就提出一连串的关于“数列”的问题:什么是数列?等差数列有什么样的性质?它有哪些计算公式?它与等比数列有何差别,又有何联系?当学生面临老师一连串的提问时,就会产生烦躁的情绪,注意力下降,思想“开小差”。这就说明老师的教学抓不住学生的兴趣点,使学生失去了学习的耐心。如果老师换一种方法,先在黑板上列出几组等差数列和等比数列,要求学生自己观察并总结出其中的性质和异同点,当学生有参考目标时就会充满学习的欲望和兴趣,就会变得更加主动。优秀的教育方式不在于一堂课能讲多少,而是能让学生学会多少。
2、上课要做到“有始有终”,有一个好的开始就要有一个好的结束,如何利用好下课前的几分钟也是一种学问。有些老师会让学生在教室提前休息,这样不仅仅浪费了时间,也会扰乱课堂纪律,因此老师可以出一两道简单的题对所学内容进行巩固,或布置下预习作业,但是切记布置的任务不要太多,以免影响学生课间休息和使学生产生逆反心理。
高中数学教育案例 篇二
高中数学课程是普通高级中学的一门主要课程,高中数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来。它从国际意识、时代需求、国民素质、个性发展的高度出发,是对于数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题,分析问题、解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。它是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它也是学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有意义。
总体目标中提出的数学知识(包括数学事实、数学活动经验)本人认为可以简单的这样表述:数学知识是“数与形以及演绎”的知识。所谓数学事实指的是能运用数学及其方法去解决的现实世界的实际问题,数学活动经验则是通过数学活动逐步积累起来的。
1、基本的数学思想
基本数学思想可以概括为三个方面:即“符号与变换的思想”、“集全与对应的思想”和“公理化与结构的思想”,这三者构成了数学思想的最高层次。对中小学而言,大致可分为十个方面:即符号思想、映射思想、化归思想、分解思想、转换思想、参数思想、归纳思想、类比思想、演绎思想和模型思想。圣于这些基本思想,在具体的教学中要注意渗透,从低年级开始渗透,但不必要进行理论概括。而所谓数学方法则与数学思想互为表里、密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。方法,是实施思想的技术手段;而思想,则是对应方法的精神实质和理论根据。
2、重视数学思维方法
高中数学应注重提高学生的数学思维能力,着是数学教育的基本目标之一。数学思维的特性:概括性、问题性、相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果)、基本形式、操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维、形象思维和直觉思维三种类型。
3、应用数学的意识
这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为“理论联系实际”在数学教学中的实践,或者理解为新大纲理念的“在解决问题中学习”的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习、主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵、启迪学生的应用意识,而学生则能自己主动探索,自己提问题、自己想、自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。
4、注重信息技术与数学课程的整合
高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
5、建立合理的科学的评价体系
高中数学课程应建立合理的科学的评价体系,包括评价理念、评价内容、评价形式评价体制等方面。既要关注学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。
通过对新课标的学习,我更深层地体会到新课标的指导思想,深切体会到作为教师,我们应该以学生发展为本,指导学生合理选择课程、制定学习计划;帮助学生打好基础,提高对数学的整体认识,发展学生的能力和应用意识,注重数学知识与实际的联系,注重数学的文化价值,促进学生的科学观的形成。在日常教学中,就要贯彻新课标的指导思想,更新理念,改进教学方法,争取早日成为合格的、成熟的数学教师!
高中数学教育案例 篇三
作为高中的数学教师,在日常的教学中经常要上习题课,但有一节习题课始终让我难以忘记。之所以难以忘记,是因为这节习题课让我感受到了教师的艰辛,快乐以及众多的反思和感悟!
那节习题课是学生学完均值不等式以后的一节习题课。上课前一天,已经把有关的习题印刷好以后发给每个同学,给学生课前充分思考的时间。原本节课计划是把所发的习题都讲完,结果只讲到第四题,关键就在这个第四题上。题目是这样的:”已知正数,满足,则的最小值是 “.当时作为青年教师,我对这道题目的处理计划是:事先看看同学做的结果,如果基本都做出正确答案,那就轻描淡写地说说思路就想讲下一道题目。结果学生大部分都得出了正确答案,所以我就按原来的计划把这个题目的一种解题思路大致说了以下。结果意外发生了!班级的很多同学举手提出质疑,他们对我的解题思路表示了不同的意见。其中大部分同学的想法是觉得我的解法不简练,个别的同学对我的解法没理解上去,说白了就是没听懂。针对这样的状况,我也只能暂时把讲课的进程停下来,要听听同学们的不同想法。
我当时给出的解法是这样的:因为,都是正数,所以,进而得出,故答案为:4
下面是当时的学生给出的几种典型的解法:
解法一:
解法二:
解法三
解法四:
解法五:可令则
解法六:
解法七:因为已知条件和要求最小值的表达式都是对称轮换式,所以只有当时候取最小值,故最小值为4.
对这些不同解法,学生口述,我在板〖www.1126888.com〗书的过程中,我内心里是惭愧和欣慰交融在一起。惭愧的是自己对本节课的准备还很不充分,也感受到自己的业务功底还不够厚实。欣慰的是自己的学生并不仅仅把自己的学业看做是一种无奈地要去完成的任务,有个答案就完事大吉,而是要把结果的来龙去脉弄清楚,而且不少的学生还有那种对方法的求简,求优的意识,这个是非常难得的!由于同学们提供的解法太多,在还有几分钟时间下课的时候,才把这个题目真正地讲完。回顾当时后来几分钟的时间里我的做法,说句心里话,我现在还很佩服我自己的。首先归纳了前五种解法的各自特点,然后我说明了自己的解法与解法六是本质上是一类做法,但自己的思路显得不够流畅,思路就象折线那样,感觉不舒服,不自然,但同学们给出的第六种解法,简明扼要,思路流畅,自然和巧妙!感觉很美!第七种解法更是从填空题的特殊性和这个题目的特殊性,即对称性,针对这个题目,整个解法中是最好方法,而且告诉学生,第七种解法是我开始没有想到的。作为教师,在学生面前敢于承认自己的问题。我觉得不能简单地理解成是教师的诚实,而更重要的是让学生感受到,做人不但要诚实,还有敢于面对自己的短处。有短处并不怕,可怕的是看不到自己短处或看到短处后不敢于面对它,因为人是在不断发现短处并直面自己的这些弊端而改掉自身的短处中成长起来的。
这节课上完当天,我对自己的这节课进行了系统的反思。其中最值得自己反思的是:对课堂教学的课前备课的认识不足,再就是对数学教师最基本的一个能力要求,即解题方面的研究还很不到位。如果当时上课前,多思考和研究本节课中第四题里所蕴涵的丰富的数学和思维素材,我想也不至于出现让我感到意外的情况发生!在教师主动的状态下,自如地讲好本节课的话,不论是数学能力的培养角度,还是渗透数学思想和方法的角度,能使学生能有更大的收益。还有就是对解题理论的研究还很不到位。首先,这个题目要让学生彻底地弄明白,实际需要向学生明确:一个题目有这么多的解法的本质原因,即形成这么多解法的根源就是不同角度地观察这个题目所蕴涵的知识或题目结构特征后形成不同的解题思路的结果;其次本题所体现的不同解法体现了解答这个题目的通法的多样性,但其中解法七本身有明显的局限性。如果题目不是填空题,而是个解答题,这个通法是不可用的。
作为中年教师,今后的教学之路还很漫长,但凭借本人现在对待教学的态度和良好的工作习惯以及今后的更加努力,相信自己一定能在平凡的教学岗位上取得更加优异的成绩!
高中数学教育案例 篇四
新课程标准下要求教师在数学教学过程中充分理解和信任学生。理解是教育的前提。在教学中教师要了解学生的内心世界,体会他们的切身感受,理解他们的处境。尊重学生,理解学生,热爱学生,只要你对学生充满爱心,相信学生会向着健康、上进的方向发展的。因为“教育是植根于爱的”。“聪明的教师总是跟在学生后面;愚昧的教师总是堵在学生的前面。”数学与人类社会的关系,认识数学的科学价值,文化价值,提高提出问题,分析问题,解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
它是学习高中物理,化学,技术等课程和进一步学习的基础。同时,它也是学生的终身发展,形成科学的世界观,价值观奠定基础,对提高全民族素质具有意义。学生并不是空着脑袋走进教室的。在走进课堂前,每个学生的头脑中都充满着各自不同的先前经验和积累,他们有对问题的看法和理解,也想表达、诉说。契诃夫曾说过:“儿童有一种交往的需要,他们很想把自己的想法说出来,跟老师交谈。”这就要求教师新课程标准下要转变观念,积极创设能激起学生回答欲望、贴近学生生活、让他们有可说的问题,让他们有充分发表自己看法和真实想法的机会,变“一言堂”为“群言堂”。当然,教师作为教学的组织者也不能“放羊”,在学生说得不全、理解不够的地方,也要进行必要的引导。
总体目标中提出的数学知识(包括数学事实,数学活动经验)本人认为可以简单的这样表述:数学知识是"数与形以及演绎"的知识。所谓数学事实指的是能运用数学及其方法去解决的现实世界的实际问题,数学活动经验则是通过数学活动逐步积累起来的。
本人在高中数学新课程培训中认真听取专家讲课,对于新课标有一定的心得体会汇报如下。
1、基本的数学思想
基本数学思想可以概括为三个方面:即"符号与变换的思想","集全与对应的思想"和"公理化与结构的思想",这三者构成了数学思想的最高层次。对中小学而言,大致可分为十个方面:即符号思想,映射思想,化归思想,分解思想,转换思想,参数思想,归纳思想,类比思想,演绎思想和模型思想。圣于这些基本思想,在具体的教学中要注意渗透,从低年级开始渗透,但不必要进行理论概括。而所谓数学方法则与数学思想互为表里,密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。方法,是实施思想的技术手段;而思想,则是对应方法的精神实质和理论根据。就中小学数学而言,大致有以下十种:变换与转化,分解与组合,映射与反映,模型与构造,概括与抽象,观察与实验,比较与分类,类比与猜想,演绎与归纳,假说与证明等。
2、重视数学思维方法
高中数学应注重提高学生的数学思维能力,着是数学教育的基本目标之一。数学思维的特性:概括性,问题性,相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果),基本形式,操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维,形象思维和直觉思维三种类型。数学思维的一般方法;观察与实验,比较,分类与系统化,归纳演绎与教学归纳法,分析与综合,抽象与概括,一般化与特殊化,模型化与具体化,类比与映射,联想与猜想等。思维品质是评价和衡量学生思维优劣的重要标志,主要表现为:思维的广阔性,深刻性,灵活性和批判性,独创性。
3、应用数学的意识
这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为"理论联系实际"在数学教学中的实践,或者理解为新大纲理念的"在解决问题中学习"的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习,主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵,启迪学生的应用意识,而学生则能自己主动探索,自己提问题,自己想,自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。
4、注重信息技术与数学课程的整合
高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机,计算器等进行探索和发现。
5、建立合理的科学的评价体系
高中数学课程应建立合理的科学的评价体系,包括评价理念,评价内容,评价形式评价体制等方面。既要关注学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。
总之,新课程标准下数学教学过程对学校管理,对教师和学生都提出了新的要求,面对新课程,教师要在教学过程中充分理解新课程的要求,要树立新形象,把握新方法,适应新课程,把握新课程,掌握新的专业要求和技能----学会关爱、学会理解、学会宽容、学会给予、学会等待、学会分享、学会选择、学会激励、学会合作、学会"IT"、学会创新,这只有这样,才能与新课程同行,才能让新课程标准下数学教学过程更加流畅。
高中数学教育案例 篇五
说来从事高中数学教学已经几年有余了,谈及自己的教学经历和教学方法,自己感想颇多,现在的我比较注意在教学的每个环节中全面考虑学生的认知因素,情感因素的彼此交融,彼此协调,从而使自己能够顺利完成教学的目标。这一举措的实施,使我的教学的效果获得了全面的提升,并且我的课堂也朝气洋溢,充满活力,学生的学习兴趣也变得越来越浓厚。
记得在一次上课时,那时是在讲数列问题,是要求学生把握通过观察法求数列的通项公式,课堂上我出了几道题让学生练习,要求学生通过前几项的规律归纳总结出数列的通项公式,在巡视过程中发现这些题普遍做的不好,即使班上的好学生也冥思苦想,当时我感到很纳闷。在课后,我做了仔细的思考和调查,发现学生遇到此类不懂的题目时就一筹莫展,真有点盲人摸象的感觉。就连优等生也感到有些茫然。但是学生到感到很有兴趣,都能很认真的在思考。她们都以为此题看似简单解起来为什么却如此之难。看到学生学习情感和立场,我由衷的感到开心。我给学生提示:数学题,可以分为两大类,一类是应用数学规律题,一类是发现数学规律题。应用数学规律题,指的是需要学生应用之前学习过的数学规律解释回答的题目。发明数学规律题,指的是与学生之前学习的数学规律
没有什么关系,需要学生先从已知的事物中找出规律,才能够解释回答的题目。学生所做数学操练,绝大多数属于头类。找数学规律的题目,题目有关一个或几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。于是,捉住了变量,就等于捉住了解决不懂的题目的关键。 通过我的提示,更加激发了她们的好奇心和求知欲,我让同学们汇集我们相关的习题和课外题,因为有些同学们想“难为一下老师”,也想准确展示一下自己。于是刻意查询了许多资料,找了许多她们以为的难题,我也调整了我的教学计划,打算用一节课的时间解决这个不懂的题目,并为此做了充实的准备。
又一节课开始了,孩子们都很期待这节课,都挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看一系列数列,让他们去试着寻找规律,虽然在解决时不时的会遇到一些困难,但这些问题终究让学生解决了。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的问题:自己试着从已经解决了的
问题中总结规律,形成自己的“公理”,学生们很乐意,也开始动手总结了。整个学习过程便得是那样的轻松,活泼。经过大概十分钟的归纳,学生有了自己的结论,然后开始了热火朝天的讨论,带经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
新的一节课开始了,一组同学首先提问,其它组同学也不甘示弱,挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看函数规律题与图形规律题,获得规律式的题目有什么特点,很快她们得出了结论:很多是二次函数关系,也有高次函数关系。这个结论很是准确,这是我所想不到的。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的不懂的题目:那么如何能判断这个规律式是二次函数关系呢?带着这一不懂的题目,同学们又踊跃摸索起来。从几道二次函数规律式不懂的题目中找到了真正的谜底:当因变量的差除以相应自变量是常数时,就是一次函数关系。那末,其它情况一般就是二次函数关系了。带着同学自
己得出的结论,我们展开了大讨论活动,经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
真正找规律,固然是找数学规律。而数学规律,多数是函数的解析式。函数的解析式里常常包含着数学运算。因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。于是,从运算着手,尝试着做一些比较,也是解决回答找规律题的好途径。经过此次教学经历,我真正意识到学生的需求是头位的,在此后的教学中,应从学生的实际需求出发,引发学生的探求知识欲望与摸索欲望,使不同的学生在数学上有不同的成长,为丰富数学课堂教学打下坚实的根基。
高中数学教育案例 篇六
幸福,对于当下急功近利、欲壑难填的国人来说,是一个敏感的话题,也是一件可遇而不可求的奢侈品。人们都说,一千个读者就有一千个哈姆雷特,那么,是不是13亿中国人就有13亿种对幸福的解读呢?答案不得而知,但是,作为一个从教7年的年轻教师,一个对生活要求不算太高的年轻教师,我确确实实地感受到了作为一名教师的幸福,这其中虽然伴随着成长的跌跌撞撞,但是我一直坚信,我能成为一名因我的存在而让学生感到幸福,同时我也乐在其中的老师,因为彼岸花开,希望永在。
幸福来自彼此的喜欢。
20xx年秋天,我踏进了亚林一中的校门。我认真备课,我虚心求教。只要有时间我就去听数学组其他老师的课,认真做好笔记,回寝室后我就认真钻研反思,我与前辈的差距在哪,我如何在最短的时间里成长。很快,我的勤奋务实有了回报。学生看见我,老远就跑过来,问这问那,课堂上学生的小眼睛都瞪得圆圆的,自然成绩错不了。有一个叫张浩的学生的妈妈找到我,说张浩近一段时间特别愿意学数学,而她因一些小事和孩子闹得不愉快,问我能不能帮她劝劝孩子。这是我始料未及的,但我欣然答应了。结果是皆大欢喜。所以,这一年的教学经历告诉我,要想成为一名幸福的老师,就要做到既能走到学生身边,又要走进学生的心里,彼此喜欢,彼此不设防,幸福才能悄然来临。
幸福来自彼此的尊重。
学生尊重老师,理所当然。其实,老师尊重学生也是理当如此。20xx年,因为我教学成绩突出,我被调到高一年组承担文科重点班的教学任务。说起这届学生,就不得不说一个叫张纪元的孩子,他在20xx年的高考中取得了数学141的高分,成为松林管局文科状元。对于刚接触的这个年组第一却选择文科的优秀学生,我要求自己一定要用自己的专业水平赢得他的尊重。我认真备课,做大量的高考题,为他量身选择能激发他的学习热情和动力的习题,哪怕是在我高三每周42节课的时候。如今已中国政法大学大三的他仍不时地给我发短信打电话。不仅是张纪元如此,那届学生见我都会很亲切的喊我一声“晓秋老师!”所以,这三年我成长最快,虽然是被学生撵着成长起来的。我的总结是,不要小瞧学生的能力,要想成为学生的良师益友,就要学会彼此尊重。
幸福来自彼此的认同。
我一直认为林区的家长易于沟通,只要你是一个认真负责的老师,家长就会认可你。20xx年春节,邵明洋的爸爸问了好多人之后,终于打通了我新换的电话,就是想表达一下感激之情。他说,孩子是花了8000元钱上的高中,初中数学倒数,如今成了数学成绩年组第一的优等生,他很感激。放下电话,我的心中溢满了幸福感。一个老师的价值能得到家长的认可,那他就是一个幸福的老师,我把这样的认可当成我最高的荣誉,千金不换。
人往往因为生命的不完美而感到有所缺憾,也因此感慨幸福的难得。就如张爱玲说,生命是一袭华丽的袍子,上面爬满了蚤子。不要苛求幸福,其实它就在不远处,也许就在彼岸,在你思维的转角处。感谢让我成长,让我感受到作为一名教师的幸福的学生、家长、同仁。
看,彼岸花开,幸福常在。
高中数学教育案例分析 篇七
在教学过程中,我觉得教学反思主要是针对以下几方面进行:对数学概念的反思、对学数学的反思、对教数学的反思。
1、重视视基础知识、基本技能的基本方法的反思-学会数学的思考。
高中数学的教学目标是让学生学会数学。对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。
下面从不同的角度来看:以函数为例从逻辑的角度看,函数概念包含定义域、值域、对应法则等以及单调性、奇偶性、周期性、对称性等性质和一些具体的函数,这些内容是函数教学的基础,但不是全部。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其它内容也有联系。方程的根可以作为函数的图象与x轴交点的横坐标;不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。
2、学生学数学的自我反思
高中数学与初中数学最大的区别是从实际的算到理论的思。当初中学生第一次走进高中数学课堂时,他们的头脑并不是一张白纸——对数学有着自已的认识和感受。教师不能把他们看成“空的容器”,按着自已的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多地把学生头脑中的问题“挤”出来,使他们解决问题的思维过程暴露出来,使他们感到数学中的问题所在,思路的矫正,以及对数学更深入的理解。
3、教师对教数学的反思。
课堂上学生是主体,教师是主导,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动为主动,让学生成为学习的主人,教师成为学习的领路人。教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自已的讲解并没有很好地针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味地想要他们按照某个固定的程序去解决某一类问题,学生当时也明白了,但并没有理解问题的本质性的东西。
以上就是众鼎号为大家带来的7篇《高中数学教育案例》,希望可以启发您的一些写作思路。