最好的数学学习方法有哪些3篇
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。只要掌握了数学学习的方法和思维,学习过程就变得通透了,读书破万卷下笔如有神,下面众鼎号为您精心整理了3篇《最好的数学学习方法有哪些》,希望能够对困扰您的问题有一定的启迪作用。
数学学习方法技巧 篇一
学好初一数学的方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。
听,听知识形成的。来龙去脉,听重点和难点,听例题的解法和要求。
思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。
记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
初二数学学习方法技巧
1、配方法:
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
4、待定系数法:
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
初三数学复习方法及技巧
一、深刻理解概念。
概念是初三数学的基石,学习概念(包括定义、定理、性质与判定)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。多看一些例题。
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
数学学习方法 篇二
一、掌握预习学习方法,培养数学自学能力
预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节。预习可以用“一划、二批、三试、四分”的预习方法。“一划”就是圈划知识要点,基本概念。“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方;“三试”就是尝试性地做一些简单的练习,检验自己预习的效果。“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
二、掌握课堂学习方法,提高课堂学习效果
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。
三、掌握练习方法,提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:
1、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。
2、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。
3、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。
4、细观察、活运用、寻规律、成技巧。
四、掌握复习方法,提高数学综合能力。
复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法。
1、合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习。
2、采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系。
3、突破薄弱环节的复习方法。要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力。
数学学习方法 篇三
1、第一步要增强自己的自信心
从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强学习动力。
2、狠抓基础,循序渐进
完善基础知识,在数学的学习上一直比较吃力大概率是某些题没有做到炉火纯青的地步,所以你需要对知识点全部理解和掌握,找到知识死角,吃透知识。这些同学可以利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。
3、养成好的学习习惯
在学习的过程中,培养预习、带着问题上课、复习、积累、总结的习惯,从“要学”变成“会学”,最后会“自学”。不仅对现在很重要,对以后高中的学习也有很大帮助。
4、循序渐进,逐步加大做题难度
基础扎实之后,可以逐渐增加难度,做一些中等难度的题目,也不能盲目的只顾做题,要注重思维、思考问题的能力,解题的方法、技巧的训练。
5、突出重点,突破难点
认真分析按照中考考纲及近几年中考数学试卷命题的变化规律,对重点考查内容进行分类训练,对难点进行各个击破。
6、熟悉数学思想,学以致用
熟悉并运用常用的数学思想,如方程思想、整体思想、化归思想、函数思想、数形结合思想、分类讨论思想等。
7、中考基础题真题演练
要求达到自己理想的正确率,也可以全面考察知识漏洞情况,可以再做复习。
8、中考压轴题突破
纵观数学中考命题规律,压轴题主要出现在函数和三角形或四边形或圆部分的动态问题或分类讨论的内容。对压轴题进行分类剖析,形成解题思路和技巧。
拓展阅读:中考数学应试技巧
做题原则一快一慢
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。
当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。
把握技巧,分段得分
对于中考数学中的难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是“分段给分”的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。
答卷顺序,三先三后
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。在做题的时候我们要遵循“三先三后”的原则。
先易后难
这点很容易理解,就是我们要先做简单题,然后再做复杂题。当全部题目做完之后,如果还有时间,就再回来研究那些难题。当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。也就违背了我们的原意。
先高后低
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。这样能够拿到更多的总得分。并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别慢,所以要尽可能地把这两个问号做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
先同后异
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
读书破万卷下笔如有神,以上就是众鼎号为大家整理的3篇《最好的数学学习方法有哪些》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在众鼎号。