高一数学必修二教案优秀3篇
作为一位优秀的人民教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,下面众鼎号为您精心整理了3篇《高一数学必修二教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
高一数学必修二教案 篇一
课题
1.2.1投影与三视图
课型
新课
教学目标
1、了解中心投影和平行投影的概念;
2、能够判断简单的空间几何体(柱、锥、台、球及其简单组合体)的三视图,能够根据三视图描述基本几何体或实物原型;
3、简单组合体与其三视图之间的相互转化。
教学过程
教学内容
备注
一、
自主学习
1、照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。
2、在建筑、机械等工程中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,你想知道这方面的基础知识吗?
二、
质疑提问
下图中的手影游戏,你玩过吗?
光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。
思考1:不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?
一、中心投影与平行投影
思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?
思考3:用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?
思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?
思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影。一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?
思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?
投影的分类:
把一个空间几何体投影到一个平面上,可以获得一个平面图形。从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:
正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左面向右面正投影,得到的投影图。
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
几何体的'正视图、侧视图和俯视图,统称为几何体的三视图。
思考1:正视图、侧视图、俯视图分别是从几何体的哪三个角度观察得到的几何体的正投影图?它们都是平面图形还是空间图形?
三、
问题探究
思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?
思考3:圆柱、圆锥、圆台的三视图分别是什么?
思考5:球的三视图是什么?下列三视图表示一个什么几何体?
例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同。
四、
课堂检测
五、
小结评价
1、空间几何体的三视图:正视图、侧视图、俯视图;
2、三视图的特点:一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样;
3、三视图的应用及与原实物图的相互转化。
高一数学必修二教案 篇二
教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性、了解有限集、无限集、空集概念,
教学重点:集合概念、性质;“∈”,“?”的使用
教学难点:集合概念的理解;
课型:新授课
教学手段:
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作a∈A,
a不是集合A的元素,就说a不属于集合A,记作a?A
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?
(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数
(9)方程的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的。集合
3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N有理数集Q
正整数集N__或N+实数集R
整数集Z注:实数的分类
5、集合的分类原则:集合中所含元素的多少
①有限集含有限个元素,如A={-2,3}
②无限集含无限个元素,如自然数集N,有理数
③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“?”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”
(1)所有在N中的元素都在N__中( )
(2)所有在N中的元素都在Z中( )
(3)所有不在N__中的数都不在Z中( )
(4)所有不在Q中的实数都在R中( )
(5)由既在R中又在N__中的数组成的集合中一定包含数0( )
(6)不在N中的数不能使方程4x=8成立( )
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的
3、常见数集的专用符号、
五、作业布置
1、下列各组对象能确定一个集合吗?
(1)所有很大的实数
(2)好心的人
(3)1,2,2,3,4,5、
2、设a,b是非零实数,那么可能取的值组成集合的元素是
3、由实数x,-x,|x|,所组成的集合,最多含( )
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
4、下列结论不正确的是( )
A、O∈NB、QC、OQD、-1∈Z
5、下列结论中,不正确的是( )
A、若a∈N,则-aNB、若a∈Z,则a2∈Z
C、若a∈Q,则|a|∈QD、若a∈R,则
6、求数集{1,x,x2-x}中的元素x应满足的条件;
高一数学必修二教案 篇三
学习目标
1、结合已学过的数学实例,了解归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用、
2、结合已学过的数学实例,了解类比推理的含义;
3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、
学习过程
一、课前准备
问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是
……所以n边形的内角和是
新知1:从以上事例可一发现:
叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。
新知2:类比推理就是根据两类不同事物之间具有
推测其中一类事物具有与另一类事物的性质的推理、
简言之,类比推理是由的推理、
新知3归纳推理就是根据一些事物的',推出该类事物的
的推理、归纳是的过程
例子:哥德巴赫猜想:
观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
归纳推理的一般步骤
1通过观察个别情况发现某些相同的性质。
2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※典型例题
例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。
变式1观察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……
你能猜想到一个怎样的结论?
变式2观察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一个怎样的结论?
例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式
例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、
圆的概念和性质球的类似概念和性质
圆的周长
圆的面积
圆心与弦(非直径)中点的连线垂直于弦
与圆心距离相等的弦长相等,
※动手试试
1、观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?
2如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
三、总结提升
※学习小结
1、归纳推理的定义、
2、归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)、
3、合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法
以上内容就是众鼎号为您提供的3篇《高一数学必修二教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。