首页 > 教师教学 > 教学设计 >

八年级下册数学第六章反比例函数知识点(精选3篇)

众鼎号分享 87252

众鼎号 分享

在我们上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。还在苦恼没有知识点总结吗?众鼎号为朋友们整理了3篇《八年级下册数学第六章反比例函数知识点》,如果对您有一些参考与帮助,请分享给最好的朋友。

反比例函数解析式的特征 篇一

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数高一数学知识点

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

反比例函数的定义 篇二

定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质

函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,

1、当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的取值范围是: x≠0;

y的取值范围是:y≠0。

4、。因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴

5、 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式

(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0)。

2、要求出反比例函数的解析式,利用待定系数法求出k即可。

反比例函数知识点总结 篇三

1、反比例函数的表达式

X是自变量,Y是X的函数

y=k/x=k?1/x

xy=k

y=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

2、函数式中自变量取值的范围

①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

y=k/x=k?1/x

xy=k

y=k?x^(-1)

y=kx(k为常数(k≠0),x不等于0)

3、反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?

过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的。绝对值=(x_y)的绝对值=|k|

研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

5、反比例函数性质有哪些?

1、当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

3、因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4、在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

5、反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6、若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

7、设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k?m≥(不小于)0。

8、反比例函数y=k/x的渐近线:x轴与y轴。

9、反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。

10、反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12、|k|越大,反比例函数的图象离坐标轴的距离越远。

13、反比例函数图象是中心对称图形,对称中心是原点

以上就是众鼎号为大家带来的3篇《八年级下册数学第六章反比例函数知识点》,能够给予您一定的参考与启发,是众鼎号的价值所在。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:自费留学越南的条件的具体介绍【2篇】

下一篇:返回列表