首页 > 学生学习 > 学习总结 >

中考数学知识点总结(优秀7篇)

众鼎号分享 47893

众鼎号 分享

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,众鼎号为朋友们整理了7篇《中考数学知识点总结》,希望朋友们参阅后能够文思泉涌。

中考初中数学知识点总结 篇一

椭圆知识:平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

椭圆的第一定义

即:│PF1│+│PF2│=2a

其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。P 为椭圆的动点。

长轴为 2a; 短轴为 2b。

椭圆的第二定义

平面内到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c[焦点在X轴上];或者y=±a^2/c[焦点在Y轴上])。

椭圆的其他定义

根据椭圆的一条重要性质,也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值 定值为e^2-1 可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况,还有K应满足<0且不等于-1。

简单几何性质

1、范围

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(当中心为原点时)(a,0)(-a,0)(0,b)(0,-b)

4、离心率:e=c/a

5、离心率范围 0

知识归纳:离心率越大椭圆就越扁,越小则越接近于圆。

初中数学知识点总结:平面直角坐标系

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

初中数学知识点:平面直角坐标系的构成

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学知识点:点的坐标的性质

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的'。

初中数学知识点:因式分解的一般步骤

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

初中数学知识点:因式分解

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数

②相同字母取最低次幂

③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初中数学知识点总结 篇二

初中数学知识点总结:中位线

知识要点:梯形的中位线平行于两底,并且等于两底和的一半。

1.中位线概念

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

2.中位线定理

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半。

三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。

知识要领总结:三角形的中位线所构成的小三角形(中点三角形)面积是原三角形面积的四分之一。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

数学中考知识点苏教版 篇三

一、圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

初中数学重要知识点总结 篇四

数轴

11 有向直线

在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

规定了正方向的直线,叫做有向直线,读作有向直线l

12 数轴

我们把数轴上任意一点所对应的实数称为点的坐标

对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。如果想要了解更多更全的初中数学知识就来关注吧。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点总结 篇五

一、平移变换:

1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2。性质:(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3。平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。

二、旋转变换:

1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

www.shancaoxiang.com (3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2。性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3。旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

中考数学考点整理 篇六

一、计算题:

科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图面积、三角形(相似、全等、内角外交关系)、统计(众数、中位数、平均数)、二次函数(顶点、对称轴、表达式)、函数图像关系

二、填空题:

因式分解、二次函数解析式求解、三角形(相似、周长面积计算)、坐标(坐标点运动规律)、直线和反比例函数图像问题

三、问答题:

次方、开方、三角函数、次幂(0次、-1次)计算;

求解不等式组;

分式、多项式化简(整体代入方法求值);

方程组求解;

几何图形中证明三角形边相等;

一次函数与二次函数;

四、图形题

四边形边长、周长、面积求解;

圆相关问题(切割线、圆周角、圆心角);

统计图;

在数轴中求三角形面积;

五、解答题

二次函数(解析式、直线方程);

圆与直线关系;

三角形角度相关计算;

总体来说中考题,题目多,需要熟练掌握相关的知识点,快速做题。近些年中考数学题型都比较固定、难度适宜,需要在正确率方面留心,对于三角形、四边形面积计算知识板块要高度重视。

中考初中数学知识点总结 篇七

自然数的分类包括了奇数和偶数,质数与合数、1和0。

自然数的分类

①按能否被2整除分

可分为奇数和偶数。

1、奇 数:不能被2整除的数叫奇数。

2、偶 数:能被2整除的数叫偶数。

注:0是偶数。(20__年国际数学协会规定,零为偶数。我国20__年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。

②按因数个数分

可分为质数、合数、1和0。

1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。

3、1:只有1个因数。它既不是质数也不是合数。

4、当然0不能计算因数,和1一样,也不是质数也不是合数。

备注:这里是因数不是约数。

同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。

以上就是众鼎号为大家带来的7篇《中考数学知识点总结》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:初中物理知识点总结归纳【优秀4篇】

下一篇:返回列表