首页 > 教师教学 > 教案模板 >

平行四边形教案【精选6篇】

众鼎号分享 135341

众鼎号 分享

认识平行四边形是小学阶段图形与几何部分十分重要的基础知识之一。平行四边形的认识教案有哪些呢?下面是众鼎号为大伙儿带来的6篇《平行四边形教案》,亲的肯定与分享是对我们最大的鼓励。

平行四边形 篇一

《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。下面是由小编为大家带来的关于《平行四边形面积》说课稿,希望能够帮到您!

一、说教材

平行四边形的面积的教学是在学习了几何初步知识、长方形、正方形的面积计算以及平行四边形、三角形和梯形的认识的基础上安排的,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。长方形面积计算公式是平行四边形面积计算公式的基础,而平行四边形面积计算公式又是后面学习三角形和梯形面积计算的依据。因此这节课的内容在整个教材体系中起到承上启下的作用。于是我在教学时,将充分运用转化迁移思想,重视学生动手操作与实践,引导学生用已学的旧知去获取新知,构建新的认知结构。

二、说教法学法

本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性。利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

三、说学生

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成过程。

四、说教学目标及重难点

按照三个维度的要求,本节课的目标确定为三个:

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。

3、培养学生观察、分析、概括、推导和解决实际问题的能力。

4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:

理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:

通过转化的方法理解平行四边形的面积计算公式。

教学准备:

多媒体课件;让每个学生准备一个平行四边形纸片和一把剪刀。

五、说教学设计思路

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征,会画平行四边形的高。为了让学生更好的理解掌握平行四边形面积公式。因此,在教学中让学生经历猜想操作验证推理的过程,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形面积转化成长方形面积,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想感受到数学知识的应用价值。

六、说教学环节

我将整个教学过程划分为四步:

1、复习长方形的面积计算公式。

再现长方形面积计算公式和平行四边形的特征,温故知新,为推导平行四边形的面积公式作好铺垫。

2、用数格子的方法求平行四边形的面积使学生感受到这种方法误差大又有一定的局限性,激发寻找另一种方法。猜想平行四边形的面积可能和什么有关,让学生带着这个思考题进入探究平行四边形的面积计算的思维之中。

本环节教师呈现带有方格的平行四边形,让学生凭借独特思考,同桌交流互评的渐进过程进行充分的自主探究,再亲历和体验中初步感悟计算平行四边形的方法。这样设计,使得做到本节课的重点突破,为后面进一步学习面积公式做好铺垫。

3、动手操作,验证猜想:平行四边形面积的计算方法。

为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。

通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。

4、实践运用,深化认识

数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:

(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。

(2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。

(3)开放练习,培养学生解决问题的能力。

平行四边形教案 篇二

(一)教学目标

1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

2.使学生掌握平行四边形和梯形的特征。

3.通过多种活动,使学生逐步形成空间观念。

(二)教材说 www.haozuowen.net 明和教学建议 教材说明

本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。

例题

具体内容及要求

垂直与平行

例1

认识同一平面内两条直线的特殊位置关系:平行和垂直。

例2

学习画垂线,认识“点到直线的距离”。

例3

学习画平行线,理解“平行线之间的距离处处相等”。

平行四边形和梯形

例1

把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

例2

认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。

学习画高。

教学建议

1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。

教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。

2.理清知识之间的内在联系,突出教学的重点。

由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。

3.注重学用结合,就地取材,充实教材内容。

尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的`一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。

4.加强作图的训练和指导,重视作图能力的培养。

这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。

5.本单元可用6课时完成。

平行四边形 篇三

教学目标 

(一)使学生理解的概念及其特性,并会画的高。

(二)使学生掌握长方形、正方形和的关系。

(三)进一步提高学生观察、比较能力和作图能力。

教学重点和难点

理解和掌握的定义及其特性,画的高是教学重点;理解长方形、正方形与之间的关系是难点。

教学过程 设计

(一)复习准备

我们已经学过一些几何图形,观察一下这些图形有什么共同的特点?(投影)

在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形

提问:我们学过哪些四边形呢?

(学过的四边形有长方形、正方形、.)

你能举例说说哪些物体表面是吗?

教师出示挂图,让学生初步感知。

我们已初步认识了,那么什么叫?它有什么特性?这就是我们今天要研究的课题。(板书课题:)

(二)学习新课

1.理解的定义。

首先出示一组图形:

这些图形是什么形?它们有什么特征?

①动手测量。

指名一学生到黑板上用三角板检验一下,每个图形的对边怎样。

其余同学用三角板检验课本151页3个图形的对边。

然后再用尺子度量一下每组对边的长怎样。

②抽象概括。

根据你测量的结果,能说说什么叫吗?

小组先议论一下,(可能说出每组对边分别相等,也可能说出每组对边平行)再让到黑板上测量的同学说出检验与测量的结果,从而引出的确切含义。

两组对边分别平行的四边形叫做。(板书)

教师强调说明:只要四边形的每组对边分别平行就能确定它的两组对边相等,因此的定义是“两组对边分别平行的四边形”。

反馈:判断下面图形哪些是?(投影)

2.的特性。

同学们已经学过三角形,三角形具有稳定的特性,那么有什么特性呢?

(1)教师演示。

教师拿一长方形木框,用两手捏住长方形的两个对角,向相反方向拉。观察两组对边有什么变化?拉成了什么图形?什么没有变?

学生明确:两组对边边长没有变,变成了,四个直角变成了锐角和钝角。

(2)动手操作。

学生自己动手,把准备好的长方形框拉成,并测量一下两组对边是否还平行。

(3)归纳特性。

根据刚才的实验、测量,引导学生概括出:有不稳定性。(板书)

(4)对比。

三角形具有稳定性,不容易变形。与三角形不同,容易变形,也就是具有不稳定性。

这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等。)

3.学习的底和高。

(1)认识的底和高。

出示:

教师边演示边说明:

从一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做的高。这条对边叫做的底。

(2)找出相应的底和高。

出示:(投影)

观察上图中,有几条高?它们相对应的底各是哪条线段?

从而让学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

(3)画的高。

同学们已经学过三角形画高的方法,高的画法与其相同,都用过线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在内,不要求把高画在底边的延长线上。

同学动手画高:152页“做一做”。

4.教学长方形、正方形和的关系。

教师利用长方形框,拉动长方形的边,使其变成不同的。还可把变成长方形,比较一下长方形和的异同点。

引导学生明确:相同点是两组对边都分别平行,所以长方形也具有的特征,也属于。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的。

比较正方形和的相同点和不同点。

引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形。

这三种图形之间的关系可以用集合图来表示。

(三)巩固反馈

1.说说什么叫做?它有什么特性?

2.在下面图形中画高,并指出它的底。

3.在下面图形中,画出两条不同的高。

4.说一说、长方形和正方形之间的关系。

(四)作业 (略)

课堂教学设计说明

本节课是在学生对有了初步感知的基础上,通过直观演示,操作实践等手段,给学生建立明确的概念。

新课分为四个部分。

首先让同学利用前面讲过的检验平行线的方法,检查三个不同形状的,然后再用尺子度量一下每组对边的长度,让学生从实践中发现的特征,从而抽象概括出的定义。

其次通过教师的演示和学生实际操作,发现的特性,就是具有不稳定性。

然后认识的底和高,并会画高。

最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的。并用集合图表示。

在教学或练习中,既要重视直观演示,运用比较的方法,又要加强动手操作,量一量、画一画等,让学生在实践中既获得知识,又提高能力。

板书设计 

由四条线段围成的图形叫做四边形。

两组对边分别平行的四边形叫做。

特性:不稳定性。

画出两条不同的高

平行四边形教案 篇四

学习目标:

1、理解并掌握平行四边形的定义

2、掌握平行四边形的性质定理1及性质定理2

3、提高综合运用知识的能力

预习指导:

1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。

2、____________________________________是平行四边形。

3、平行四边形的性质是:_________________________________________.

学习过程:

一、学习新知

1、平行四边形的定义

(1)定义:________________ ________________________叫做平行四边形。

(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,

反过来,平行四边形就一定具有性质。

(4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.

2、平行四边形的性质

平行四边形是一种特殊的`四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

已知:如图 ABCD,

求证:AB=CD,CB=AD.

分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.

证明:

总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。

在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。

证明:

通过上面的证明,我们得到了:

平行四边形的性质定理1是_______________________________________.

平行四边形的性质定理2是_______________________________________.

二、应用举例:

例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。

例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.

例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。

三、随堂练习

1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。

2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。

四、课堂小结 :

1、平行四边形的概念。

2、平行四边形的性质定理及其应用。

五、当堂检测

1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).

(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是

2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,

EF与GH相交与点O,那么图中的平行四边形一共有( ).

(A)4个 (B)5个 (C)8个 (D)9个

3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

平行四边形教案 篇五

教学目的:

1、深入了解平行四边形的不稳定性;

2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

教学重点:

平行四边形的性质和判定。

教学难点:

性质、判定定理的运用。

教学程序:

一、复习创情导入

平行四边形的性质:

边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

角:对角相等(定理1);邻角互补。

平行四边形的判定:

边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

二、授新

1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

2、自学质疑:自学课本P79-82页,并提出疑难问题。

3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

4、反馈归纳:根据预习和讨论的效果,进行点拨指导。

5、尝试练习:完成习题,解答疑难。

6、深化创新:平行四边形的性质:

边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

角:对角相等(定理1);邻角互补。

平行四边形的判定:

边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

7、推荐作业

1、熟记“归纳整理的内容”;

2、完成《练习卷》;

3、预习:(1)矩形的定义?

(2)矩形的性质定理1、2及其推论的内容是什么?

(3)怎样证明?

(4)例1的解答过程中,运用哪些性质?

思考题

1、平行四边形的'性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

跟踪练习

1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

3、下列条件中,能够判断一个四边形是平行四边形的是( )

(A)一组对角相等; (B)对角线相等;

(C)两条邻边相等; (D)对角线互相平分。

创新练习

已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

达标练习

1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

综合应用练习

1、下列条件中,能做出平行四边形的是( )

(A)两边分别是4和5,一对角线为10;

(B)一边为4,两条对角线分别为2和5;

(C)一角为600,过此角的对角线为3,一边为4;

(D)两条对角线分别为3和5,他们所夹的锐角为450。

推荐作业

1、熟记“判定定理3”;

2、完成《练习卷》;

3、预习:

(1)“平行四边形的判定定理4”的内容 是什么?

(2)怎样证明?还有没有其它证明方法?

(3)例4、例5还有哪些证明方法?

平行四边形教案 篇六

教学目标

1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2、养成良好的审题习惯。

教学重点

运用所学知识解答有关平行四边形面积的应用题。

教学难点

运用所学知识解答有关平行四边形面积的应用题。

教学准备

三角板,直尺等。

教学过程

一、基本练习

1.口算。

4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49

530+270 3.5×0.2 542-98 6÷12

2.平行四边形的面积是什么?它是怎样推导出来的?

3.口算下面各平行四边形的面积

⑴底12米,高7米;

⑵高13分米,第6分米;

⑶底2.5厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的`麦地底长250米,高是78米,它的面积是多少平方米?

⑴生独立列式解答,集体订正。

⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,

再求共收小麦多少千克:7000×1.95=13650千克

⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

三、巩固练习

1.测量右图中平行四边形的一条底边和它对应的高,

并计算它们的面积。

2.分别计算图中每个平行四边形的面积,

你发现了什么?(单位:㎝)

四、总结全课

通过本节课的练习,你有什么收获?你还有哪些疑难问题?

五、作业

优化作业。

上面内容就是众鼎号为您整理出来的6篇《平行四边形教案》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《打电话》教案【优秀4篇】

下一篇:返回列表