首页 > 教师教学 > 教学反思 >

《合并同类项》教学设计优秀9篇

众鼎号分享 60938

众鼎号 分享

作为一名辛苦耕耘的教育工作者,时常需要编写教案,借助教案可以更好地组织教学活动。优秀的教案都具备一些什么特点呢?这次漂亮的小编为亲带来了9篇《《合并同类项》教学设计》,希望能对您的写作有一定的参考作用。

合并同类项教学设计案例 篇一

知识与技能:

理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想。

过程与方法:

1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值。

2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。

情感、态度与价值观:

结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。

确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程。

确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

一、情景引入:

约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁译本取名为《对消与还原》。对消,顾名思义,就是将方程中各项成对消除的意思。相当于现代解方程中的“合并同类项”,那“还原”是什么意思呢?

二、自主学习:

1. 解方程:

2. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?

3x+20=4x-25

观察上列一元一次方程,与上题的类型有什么区别?

3.新知学习 请运用等式的性质解下列方程:

(1) 4x-15 = 9; (2) 2x = 5x -21

你有什么发现?

三、 精讲点拨

问题2 你能说说由方程到方程的变形过程中有什么变化吗?

移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。

例1 解下列方程:

解:移项,得3x+2x=32-7

合并同类项 ,得5x=25

系数化为1,得x=5

移项时需要移哪些项?为什么?

针对训练:解下列方程:

(1) 5x-7=2x-10; (2) -0.3x+3=9+1.2x.

四、 合作探究

列方程解决问题

例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?21

思考:如何设未知数?

你能找到等量关系吗?

五、 当堂巩固

1. 对方程 7x = 6 + 4x 进行移项,得___________,合并同类项,得_________,系数化为1,得________.

2. 小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁。 求小新现在的年龄。

3. 在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?

六、 课堂小结

1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。

2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。

3.列方程解实际问题的基本思路。

七、作业布置

1.必做题:教科书第91页习题3.2第3(3),(4),11题。

2.选做题:

(1)周末,甲、乙两个商场搞促销活动,甲商场的活动为所有商品全部按标价的8折出售,乙商场的活动为标价200元以下的商品按标价出售,超出200元的部分打7折。现有某件商品在两个商场的标价都为400元,应当在哪个商场购买更实惠?如果标价为600元呢?为800元呢?你能否给顾客一些建议,以便获得更大的实惠呢?

八、板书设计

《合并同类项》教案 篇二

教学目标

1.会利用合并同类项的方法解一元一次方程;(重点)

2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用。(难点)

教学过程

一、情境导入

1.等式的基本性质有哪些?

2.解方程:(1)x-9=8; (2)3x+1=4.

3.下列各题中的两个项是不是同类项?

(1)3xy与-3xy;  (2)0.2ab与0.2ab;

(3)2abc与9bc; (4)3mn与-nm;

(5)4xyz与4xyz; (6)6与x.

4.能把上题中的同类项合并成一项吗?如何合并?

5.合并同类项的法则是什么?依据是什么?

二、合作探究

探究点一:利用合并同类项解简单的一元一次方程

例1解下列方程:

(1)9x-5x=8;

(2)4x-6x-x=15.

解析:先将方程左边的同类项合并,再把未知数的系数化为1.

解:(1)合并同类项,得4x=8.

系数化为1,得x=2.

(2)合并同类项,得-3x=15.

系数化为1,得x=-5.

方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式。

探究点二:根据“总量=各部分量的和”列方程解决问题

例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程。

解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).

答:黑色皮块有12个,白色皮块有20个。

方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解。此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来。

三、板书设计

1.用合并同类项的方法解简单的一元一次方程。

解方程的步骤:

(1)合并同类项;

(2)系数化为1(等式的基本性质2).

2.找等量关系列一元一次方程。

列方程解应用题的步骤:

(1)设未知数;

(2)分析题意找出等量关系;

(3)根据等量关系列方程;

(4)解方程并作答。

教学反思

本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫。教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯。

《合并同类项》教学设计 篇三

一、教材分析

本节课在学习了单项式、多项式及其有关概念之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是整式运算的基础,而整式的运算对学好初中数学有着十分重要的作用。

二、教学目标

⒈知识目标:①理解同类项的概念,并能辨别同类项;②掌握合并同类项的法则,并能熟练运用。

⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力。

⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育。

三、重点、难点

重点是同类项的概念、合并同类项的法则及其运用法则进行计算。

难点是同类项定义的归纳、概括。

教法

根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我将采用探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。

学法

根据学法自由性原则,让学生在教师创设的问题情景下,通过教师的启发点拨,在学生的积极思考努力下,自由参与知识的发生、发展、发现的过程,使学生掌握知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

四、教学程序

㈠新课引入

新课的开始,是课堂教学的一个重要环节。如果在新课伊始能吸引学生的注意力,引起他们浓厚的兴趣,激发强烈的求知欲望,就可以使学生愉快而主动地去接受新知识,从而取得课堂教学的理想效果。所以一开始上课,我用大屏幕显示一道实际生活中的问题,学生通过探究讨论解决问题,由此导出本节课的主题,同时为学习新课做好铺垫。

㈡探索新知

本节课第一个重要环节是同类项的概念,既是重点也是难点。为突出重点,突破难点,我设计了活动1:学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的特征。教师倾听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,再由学生概括出同类项的定义。由教师补充:几个常数项也是同类项。这样,学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的能力。

为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生。通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础。

另外还设计一道开放性题目,让学生自己动手写出两组同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力。

第二个重要环节是合并同类项的法则。通过设计问题串,引导学生获取新知。问题1,实际上是引例中的两个等式,通过学生观察,容易得出结论,左边两项系数之和等于右边的系数,明确同类项相加成为一项的方法,使学生对合并同类项有个初步认识。为克服学生对这个认识可能存在的疑点,我设计了问题2,学生展开讨论,教师深入学生中间,参与学生讨论,指导学生探究,验证上述认识的正确性,体现了获取知识不仅要有观察、归纳、猜想过程,还必须有验证过程。打消疑点之后,提出问题3,有上面两个问题做基础,学生极易回答这个问题,教师抓住时机,让学生总结概括合并同类项的法则,再次培养和提高学生的归纳概括能力。

㈢巩固新知

在这个环节中我设计了三道题。

第一题:学生判断、理解只有同类项才能合并,教师加以指导。本次活动中,教师应重点关注①学生对同类项的概念是否混淆不清,能否正确辨别问题。②是否在正确辨别后只重视系数而忽略了字母和字母的指数。③对一些同类项的变式能否正确的辨别。通过这道练习,培养学

生运用知识的能力,进一步巩固同类项的含义和合并同类项的方法,为本节课的应用做好铺垫。

第二题:是一道实际应用题。学生小组讨论、交流,首先明确要解决什么问题,并围绕这个问题开展探究,寻找解决问题的方法。教师引导学生观察,帮助学生展示大小两个长方体纸盒的模型,并深入小组,倾听学生交流,指导学生探究。学生在掌握同类项的概念和合并同类项的法则后,通过解决一个实际问题,体现了“学数学、用数学”的基本理念,并让学生体会到数学是解决实际问题的重要工具,增强应用数学的意识。

第三题:把学生分为两组,一组直接代入计算,另一组先化简再代入计算。通过比较让学生充分认识新知识的优越性,能够使学生积极主动运用新知识解决问题。

㈣课堂小结

学生分组讨论、归纳,学生代表发言。教师倾听,并对学生发言给予充分鼓励和肯定,调动学生主动参与的意识,让学生感受到集体合作的重要性。

㈤布置作业

为减轻学生的课业负担,从课本中调选了两道数学题。第一题是合并同类项,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的。第二题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识。学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化。

㈥板书设计

体现了新知识的产生过程,便于学生理解掌握知识,并加深记忆。

五、教学反思

整个教学过程遵循“由特殊到一般、再由一般到特殊”这一认识规律,教师始终是学生学习活动的引导者、激励者、协调者、服务者,给学生留出足够的活动时间与空间,设计的各个教学环节有利于引发学生的学习兴趣,有利于学生由浅入深、循序渐进地掌握知识,形成能力,获得技巧,使他们在主动探索发现之中建构自己的知识,形成素质。

合并同类项教学设计案例 篇四

本节课选自湘教版《数学》七年级上册§2.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。

基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:

教学目标:知识目标:

1、了解同类项、多项式相等的概念。

2、掌握合并同类项的法则。

能力目标:

1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

情感目标:

1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。

2、实施开放性教学,让学生获得成功的体验。

3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。

教学重点: 同类项的概念、合并同类项的法则及应用。

教学难点: 正确判断同类项;准确合并同类项。

1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。

2、 引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。

3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

为了达到教学目标,实现我的设计效果,我采用引导、探究法为主的教学法,应用多媒体课件运用cai辅助教学。设计以下主要教学流程:

1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲望,同时为本课学习做好准备和铺垫。

2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。

3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。

4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。

5)课堂小结:通过学生的自我反思,将知识条理化、系统化。

6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。

我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!

数学合并同类项教学反思 篇五

《合并同类项》是我加入周利宁名师工作室的第一节汇报课,虽然课前也做了不少的准备工作,但由于对高估了学生对新知识的接受能力,在课堂的教学中,我认为还有很多的不足,特别是经过指导老师邹秋菊的点评之后,有待改进的地方还很多。

1 、学生练习的量大,时间太紧,来不及深化与拓展,学生的思维没有得到充分发散。提出的问题,没有留给学生足够的时间思考。

2 、选择一个例题,进行规范的、完整的板书,给予学生书写规范性的示范与指导。同时,在解题过程中出现了一个小错误,即在解答开始时,应首先写“解”,教师发现后,没能及时给予指出与纠正。

3 、时间处理方面还存在欠缺,复习引入部分花的时间太多,使整个课堂显得前松后紧。

4 、 教学设计过于平淡,没能极大地调动学生的学习欲望。同时,整节课学生都显得很紧张,无法放开手脚。

5、 板书设计很重要,这能体现教师的讲课内容的重点,难点。而我的板书在这方面需要改进。

6、 同类项的概念要让学生着重理解到会灵活运用。

7、 探究过程是一个十分重要的过程。这时老师应该特别注意学生的反应。

8、 不仅内容要传授准确,而且要强调学生做题的规范性,使学生养成良好的学习习惯。

9、 在学生学习活动环节,老师应关注学生探究化简方法是否能积极思考,主动参与;是否能说出化简方法的理论依据,学生对同类项定义的理解和掌握情况对合并同类项法则的总结情况。

10、结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我教学特色。

11、在授课前要想办法,用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性,用精彩的问题设置吸引学生,用数学实验和游戏吸引学生,用生动有趣的语言、事例吸引学生。

总之,应用新教材,如何引导学生去学成为关键。这就要求我们的课堂教学模式有所改进,充分考虑学生的好奇心和荣誉感,鼓励学生多讨论多参与,让学生有机会讲述自己的见解,我们要有“度”的进行课堂管理。不仅要注重培养学生的学习兴趣,更要尊重学生的学习兴趣,不能扼杀学生的学习热情,让学生在打好学习基础的同时,又培养了自身的能力,发展了自身的特长。

数学合并同类项教学反思 篇六

这节课是在学生学习有理数乘方的基础上展开的。这节课的重点是学生能说出幂的乘方的运算性质,并用符号表示。难点在于利用同底数幂的乘法的运算性质进行运算。为了吸引学生的学习,我主要通过计算(23)2,(a4)3,(am)5的引入。让学生经历从特殊到一般的过程,让学生归纳出幂的乘方的运算性质。在这个过程中,培养了学生的自主学习,让学生充分交流各自的计算依据,发展学生的归纳能力和有条理的表达能力。对于公式的记忆,怕有些同学记不住。因此,我把底数比作是同学的脚底板,指数是学生的手指,同底数幂的乘法比作同学手牵手。将课知识形象化,有利于学生掌握新知识,更好的提高课堂效率。

但是在课堂练习中,学生做题时候出现了很多错误,例如

1.负数的奇次方与偶次方的符号的混淆,

(-2a2)2= -4a4,(-2a2)3=8a6(奇负偶正法)

2.乘方运算的错误,如32=3×2=6

学生分不清各种运算性质是错误的关键,没有什么好的方法,只能多练,这是一个熟悉的过程。培养学生把解题后的再构应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行再构,利用作业的再构给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动。

数学积的乘方教学反思范文五

本节课的主要内容是积的乘方公式及其应用。从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。实际问题情境的设置,在于让学生感受到研究新问题的必要性,由于在应用当中需要用到同底数幂的乘法和幂的乘方,也是为了引导学生回忆巩固前面的知识,所以在上新课之前先复习它们的法则。积的乘方公式的理解及应用时这节课的重点,首先要让学生理解这个公式,而要让学生理解这个公式,就要让学生理解积的乘方的含义。导出性质后,要通过一些实例说明其表达式及语言叙述中每句话的含义,以期学生更好的理解,并能在理解的基础上会用它进行计算。因此在后面设计了几个例题,以便学生进一步理解公式。总的来说这节课还是讲解清楚了积的乘方的概念,并且也给了一定的时间给学生训练,学生初步掌握了概念并能对它进行简单的应用。这节课的主要易错点是对符号的处理,这点在备课的时候我也考虑到了,因此在例题里我设计了一些学生易错的题让他们训练。

本节课存在的问题:1,、法则理解不到位。2、积的因式模糊不清。3、符号应该视为因式的一部分。在今后的教学中要注意以下的几点:第一、不能把学生看得很聪明,该下细的地方就要反复讲解。第二、对难点问题要析出几条线、不同角度加以说明。第三、多让学生之间讨论交流,让学生自己去体会总结。

合并同类项教学设计案例 篇七

1.知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2.能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3.情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

重点:同类项的概念和合并同类项的法则

难点:合并同类项

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6x2,5,cd,-1,2x2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2.若-4xay+x2yb=-3x2y,则a+b=_______.

3.下面运算正确的是( )

a.3a+2b=5ab b.3a2b-3ba2=0

c.3x2+2x3=5x5 d.3y2-2y2=1

4.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )

a.-5x-1 b.5x+1

c.-13x-1 d.13x+1

1.下列说法中,正确的是( )

a.字母相同的项是同类项

b.指数相同的项是同类项

c.次数相同的项是同类项

d.只有系数不同的项是同类项

《合并同类项》教学设计 篇八

一、教学目标:

1、使学生理解多项式中同类项的概念,会识别同类项。

2、使学生掌握合并同类项法则,能进行同类项的合并。

3、通过观察、比较交流了解教学的分类思想,并能准确判断出同类项。并熟练运用法则进行合并同类项的运算。

4、激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

二、教学重难点:

重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

三、教学方法:

引导、探究式教学、合作、交流、观察、练习、

四、教学过程:

(一)情景导入:

1、作为农村学生,我们都知道自己家的菜园里会把西红柿、黄瓜、茄子、葱分别栽培在一起,为何不把它们交叉种植呢?

再如,在小学时,老师会让我们把水果和非水果进行分类,生活中处处有分类问题,在教学中我们也会遇到一种分类问题,今天我们就共同来学习。

根据下列单项式的特征试将其分类:

8n、 -7ab、3ab、2ab、6xy、5n、-3xy、-ab、

2、形成概念:

以上式子归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)

概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:(1)同类项与系数无关,与字母的排列顺序也无关

(2)几个常数项也是同类项。

(二)强化练习:

1、思考:下列各组中的两项是不是同类项?为什么?

(1)ab与3ab; (2)2a b与2ab ;(3)3xy与- xy;

(4)2a与2ab (5)-2.1与 ; (6)5与b ;

2、请同学们思考下面的问题?

3ab+5ab=_______理由是________

-4xy2+2xy2=_______ 理由是_______

-3a+2b= 理由是_______

3、不在一起的同类项能否将同类项结合在一起?为什么?

例如:试化简多项式3x y-4xy -3+5x y+2xy +5

解:3x y-4xy -3+5x y+2xy +5--------------找出

(用不同的标志把同类项标出来!)

=3x y+5x y-4xy +2xy -3+5 ----------加法交换律

=(3x y+5x y)+(-4xy +2xy )+(-3+5)--加法结合律

=(3+5)x y+(-4+2)xy +2 ---------乘法分配律逆用

=8 x y-2 xy +2 ----------合并

探讨:

合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

(三)例题讲解

例:合并下列各式中的同类项:

1).2a b-3a b+ a b 2).2a b+2ab +a b-ab

3).6a -5b +2ab+b -6a

解:1).2a b-3a b+ a b=(2-3+ )a b=- a b

方法是:(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。

2).-2a b+2ab +a b-ab --------------找出

=-2a b+a b+2ab -ab ----------加法交换律

=(-2a b+a b)+(2ab -ab)--加法结合律

=(-2+1)a b +(2-1)ab ---------乘法分配律逆用

= -a b+ ab ----------合并

3).6a -5b +2ab+b -6a

=(6a -6a )+(-5b +b )+2ab-------没有同类项照抄下来

=-4 b +2ab

思考:合并同类项的步骤是怎样?

(四)巩固练习

1、尝试训练:(1)3x +x ; (2)xy - xy ;

(3)4a+3b+2ab-4a-4b

2、请你完成:

(1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab

(3) 2x-7y-5x+11y-1

3、知识延伸:

已知 与 是同类项,求m.n的值。

4.如果2abn+1与-4amb是同类项,则m=____,n=____;

5.若5xy+axy=-2xy,则a=___;

6.在6xy-3x-4xy-5yx+x中没有同类项的项是______

(五)课堂小结:

谈一谈:通过这节课的学习你学到了什么?

相同字母的指数一样

所含字母一样

②交换律

③结合律

④分配律

①找出

A.系数相加减;

B.字母和字母的指数不变。

⑤合并:

合并

法则

要点

(六)布置作业

1、在下列代数式中,指出哪些是同类项。

2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x ,

-x2y , 0.5 , -x2 ,2(x+y)2 ;

2、合并同类项

①3y+2y ②3b-3a3+1+a3-2b

③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

3、填空:

(1)在( )内填上相应字母,使得2( )3( )2与5x2y3是同类项;

(2)若x3ym和xny2是同类项,则 = ;

(3)若(n-3)x2yz和x2yz是同类项,则 ;

合并同类项教学设计案例 篇九

(一)知识目标

(1)了解同类项的概念,能识别同类项;

(2)会合并同类项,知道合并同类项所依据的运算律。

(二)能力目标

培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。

(三)情感、态度、价值观

(1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。

(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的能力,在合作中体验成功的喜悦,建立自信心。

重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

一、 出示问题,引出同类项的概念

1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?

问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类。

2、议一议: 归为同类需要有什么共同的特征?

8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3

3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:

(1)两同:所含字母相同,相同字母的指数也相同

(2)两无关:同类项与系数无关,与字母的排列顺序也无关

(3)几个常数项也是同类项。

4、课堂检测1:下列各组中的两项是不是同类项?为什么?

(1)ab与3ab (2)6b2a与2ab (3)3xy与- xy

(4)2a与2ab (5)-2.1与 3 (6)5与b

二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?

问题1:

3ab+ 5ab=_______ 理由是________

-4xy - 2xy=_______ 理由是_______

-3a + 2b= _______ 理由是_______

问题2:

不在一起的同类项能否将同类项结合在一起?为什么?

例如:试化简多项式3xy-2ab–3+ 5xy + 3ba + 5

解:3xy-2ab-3+5xy+3ba+5--------------找出同类项

=3xy+5xy-2ab+3ba-3+5 ----------加法交换律

=(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律

=(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用

=8xy + ab + 2 ----------合并同类项

合并同类项: 把同类项合并成一项就叫做合并同类项

问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。

合并同类项法则:

同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)

三、例题1:合并下列各式中的同类项:

(1) 2ab - 3ab + ab

(2) a – 4ab + ab + 2ab- 5ab + b

(3) 6a -5b + 2ab + b - 6a

方法是:(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。

注意:

(1)用画线的方法标出各多项式中的同类项,减少运算的错误。

(2)移项时要带着原来的符号一起移动。

(3)两组同类项之间用“+”号连接。

(4)多项式中只有同类项才能合并,不是同类项不能合并。

思考:合并同类项的步骤是怎样?

合并同类项一般步骤:

找出同类项 ,交换律 ,结合律,分配律逆用 ,合并

课堂检测2: (1)3x + x

(2) 2x - 7y - 5x + 11y - 1

(3)4a + 3b + 2ab - 4a - 4b

例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。

四、课堂小结:通过这节课的学习,你有哪些收获?

它山之石可以攻玉,以上就是众鼎号为大家带来的9篇《《合并同类项》教学设计》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《卖火柴的小女孩》活动反思(优秀7篇)

下一篇:返回列表