小学五年级数学教案(精选9篇)
五年级同学们要复习哪些数学知识点呢?这次帅气的小编为您整理了9篇《小学五年级数学教案》,亲的肯定与分享是对我们最大的鼓励。
五年级数学教案 篇一
一、 单元学习内容的前后联系
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
后续的相关内容:本册第五单元 异分母分数加减;加减混合运算;分数与小数的互化。第十册:分数乘法分数除法
二、单元编写特点与教学策略
1、在具体情境中进一步理解分数,体会分数的相对性
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
三、从《分数的基本性质》谈教学策略
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数 = = ,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
小学五年级数学教学教案设计 篇二
教学目标
1、知识与技能
(1)能直接在方格图上,数出相关图形的面积。
(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
2、过程与方法
(1)在解决问题的过程中,体会策略、方法的多样性。
(2)学会与人交流思维过程与结果。
3、情感态度与价值观
积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。
重点难点及处理问题的策略
1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。
2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。
教学过程:
一、创设情境、揭示新课。
我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。
展示地毯上的图形,让学生仔细观察图形特点,说发现。
地毯是正方形,边长为14米蓝色部分图形是对称的,……
师:看这副地毯图,请你提出数学问题。
根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”
师板书课题:地毯上的图形面积
二、自主探索、学习新知
如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
1、学生独立解决问题
要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
2、小组内交流、讨论
3、班内反馈
请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。
学生的答案也许有:
(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)
(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
(3)用总正方形面积减去白色部分的面积;(大减小法)
(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
4、学生总结求蓝色部分面积的方法。
三、巩固练习、拓展运用(课本第19页练一练)
1、第1题
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第2题
独立解决后班内反馈。
3、第3题
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。
四、全课小结,课后拓展
今天我们进行了那些活动,你收获了什么?
师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。
小学五年级数学教学教案设计 篇三
教学目标
1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。
2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。
3.通过学习活动,培养对数学学习的积极情感。
教学重难点:
会笔算除数是整数的小数除法、
教学过程
一、创设情境,设疑导入
谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。
(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)
提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?
根据学生回答,板书:6.12÷3,7.98÷4.2。
再问:你能估计一下,他们各自的时间大约是多少吗?
谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。
学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?
谈话:那么,怎样求出乐乐的爬行时间呢?
引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?
揭示课题:除数是小数的除法。
二、合作交流,探索方法
1.探索计算7.98÷4.2的思路。
除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。
学生在小组里活动,教师巡视。
学生中可能出现以下两种情况:
(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;
(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。
交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)
交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)
讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)
追问:这两种转化都是可以的,这样转化的依据是什么?
小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的思想方法。
2.探索竖式计算的过程。
通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?
提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)
再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)
要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。
指两名学生板演,评讲并反馈选择每种解法的人数。
提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?
小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?
说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。
三、练习巩固,深化拓展
1.专项练习。
出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。
让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。
2.先估再算。
下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。
出示:
5.76÷1.8= 7.05÷0.94= 0.672÷4.2=
学生练习后,组织反馈。
说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。
4.总结计算方法。
提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?
5.拓展练习。
(1)比一比,看谁算的既快又正确。
0.12÷0.25 0.12÷2.5 0.012÷0.25
提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。
学生中可以出现两种算法:
① 先用竖式算出第一题的商,再直接写出第二、三题的商;
② 把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。
着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。
小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。
说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。
四、全课小结,回顾反思
提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?
五年级数学教案 篇四
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
五年级数学教案 篇五
设计说明
本节课是在学生已有知识经验的基础上,让学生进一步体会数据的整理、描述和分析的过程,认识复式折线统计图。
1、注重情境创设,产生认知冲突。
本节课结合学生学过的复式条形统计图和单式折线统计图进行教学。新课伊始,提出问题:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?然后引出要学习的内容:复式折线统计图。
2、重视自主探究,培养学生的动手操作能力。
动手操作是学生获取知识的一种有效手段,也是《数学课程标准》中提倡的学习方式。本节课通过教师引导,并结合上节课的已有经验,让学生自己动手绘制复式折线统计图,感知复式折线统计图的特点,体会复式折线统计图的作用。
课前准备
教师准备PPT课件
学生准备直尺
教学过程
第1课时复式折线统计图(1)
⊙创设情境,导入新课
1、你知道中国最南和最北的位置吗?你知道两地的天气情况吗?
(学生结合课前收集的资料,自由交流)
2、你还记得折线统计图吗?折线统计图有什么特点?
3、以表格形式出示4月7~10日我国南北两地最高气温的变化情况。
提问:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?这节课我们就一起来探究复式折线统计图。(板书课题)
设计意图:通过回顾旧知检验已学知识,为学习复式折线统计图奠定基础。
⊙探究新知
1、认识复式折线统计图。
(1)猜想复式折线统计图:请大家迁移复式条形统计图的知识想一想,复式折线统计图有哪些特点呢?(学生自由交流)
(2)读懂复式折线统计图。
(课件出示教材84页4月7日~10日我国南北两地最高气温的复式折线统计图)
①观察、汇报复式折线统计图的组成。
②讨论怎样读复式折线统计图。
小组讨论,得出:读复式折线统计图的方法与读复式条形统计图的方法相同,可以横向观察、纵向观察、对比观察等。
③观察复式折线统计图,获取信息。
(用自己喜欢的方式观察复式折线统计图,并说一说获取了哪些信息)
设计意图:通过观察、讨论,用知识迁移法来学习新知,使学生了解复式折线统计图,同时加深对前面所学统计知识的理解,从而可以更好地掌握复式折线统计图。
2、探究复式折线统计图的特点。
(1)课件出示课前制作的曾母暗沙和漠河县两地xxxx年4月7~10日最高气温的单式折线统计图,引导学生对比单式和复式折线统计图,找出两者之间的异同,填写下表。
相同点
不同点
单式折线
统计图
(1)有标题、横轴、纵轴、单位名称。
(2)确定每一格代表多少单位。
(3)先描点,再连线,连线要用直尺。
只有一条折线。
复式折线
统计图
(1)有两条折线。
(2)有图例。
(2)小组合作探究复式折线统计图的特点。
通过对比,你发现复式折线统计图有哪些优势?
预设
复式折线统计图不但能表示出两组数据数量的多少、数量增减变化的情况,而且还可以比较两组数据的变化趋势。
3、读统计图,解决问题。
(1)两地哪天的最高气温相差最大?相差多少?
(2)两地最高气温相差25℃的是哪天?
(3)曾母暗沙的最高气温是如何变化的?漠河呢?
(4)从总体上看,两地这几天的最高气温之间最明显的差别是什么?
(学生独立完成后交流汇报)
设计意图:通过自主探究、合作交流的学习方式,引导学生通过对比单式和复式折线统计图,进一步认识、读懂复式折线统计图,并能够从图中发现问题、提出问题、解决问题,培养学生的应用意识。加深对复式折线统计图的理解。
五年级数学教案 篇六
一教学内容
和复习
教材第101页的内容。
二教学目标
1.通过复习,帮助学生梳理本单元的知识要点及知识间的联系。
2.培养学生归纳、知识的能力,掌握和复习知识的方法。
3.培养学生自觉复习的习惯。
三重点难点
归纳、本单元的知识点。
四教具准备
投影。
五教学过程
(一)导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
(二)教学实施
1、引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。
老师随着学生的汇报,进行板书。
板书如下
2.应用知识练习。
(1)完成教材第101页的第1题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
(2)完成教材第101页的第2题。
让学生先将这7个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。
(3)完成教材第101页的第3题。
学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
(4)完成教材第101页的第4题。
先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。
提问:互化时要注意什么?
(四)思维训练
1、分数是真分数,而且可以化成有限小数,x最大是几?
2.一个分数,分子和分母的和是43,如果分母加上17,这个分数就可以化简成言,这个分数是()o
3.一个最简分数,把它的分子扩大2倍,而分母缩小到原来的后,正好等于,这个分数原来是()。
(五)课堂
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
小学五年级数学教案 篇七
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
教学重点:
使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
教学难点:
使学生学会并理解求两个特殊数的最小公倍数的方法。
教学实录:
一、引入:
师:同学们,现在是什么季节?
生:春天。
师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。
[点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值]
二、新授
1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?
生①:解决了。
生②:没有解决,过一段时间,它们会一起回来的。
师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。
(2)学生讨论
(3)学生汇报
师:哪个小组来展示你们的研究成果?
生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。
师:这种方法形象直观,非常好,还有不同和方法吗?
生②:用数轴证明。(学生在展台演示)
师:大家认为这种方法怎么样?
生:简洁清楚。
师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?
生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。
板书:30的倍数:30 60 90 120
40的倍数:40 80 120
(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。
2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。
学生验证
学生汇报。
生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。
师:恩,还是不行,我们发现60和90也有公倍数。
3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。
生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。
师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数
五年级数学教案 篇八
一、主要教学内容
㈠数与代数
1、第一单元“小数除法”。本单元包括小数除法,积商近似值,循环小数、小数四则混合运算等内容。结合具体情景,经历探索小数除法计算方法的过程,初步体验转化的数学思想。了解在生活中有时只需要求积商的近似值,掌握求近似值的方法,培养估算意识。初步了解循环小数,运用小数四则运算解决日常生活中的简单问题。
2、第三单元“倍数与因数”
本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决一些简单问题。通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。
3、第五单元“分数”
在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
㈡空间与图形
1、第二单元“轴对称和平移”
结合实例,感知平移轴对称现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。
2、第四单元“多边形的面积”
本单元学习的内容主要有:平面图形面积大小的比较方法、平行四边形面积的计算方法、三角形面积计算的方法以及梯形面积计算的方法等。
2、第六单元“组合图形的面积”
本单元的主要内容有:组合图形面积的计算与生活中各种不规则图形面积的
估计与计算。在第二单元中,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,这也是提高学生综合能力的重要平台。
本单元的具体学习内容安排了两个情境活动:在“组合图形的面积”中,重点介绍组合图形的形成以及计算组合图形的分割方法;在“探索活动——成长的脚印”中,主要学习不规则图形面积的估计与计算。通过这些内容的安排,让学生形成解答组合图形的基本能力。
㈢统计与概率
第六单元“可能性”
本单元学习的主要内容有:用分数表示可能性的大小与运用分数表示可能性大小的知识设计日常生活中的方案。在二年级时,学生已经学习了客观事件出现的可能性的,在三年级时,他们学习了客观事件出现可能性的大小,认识到可能性大小的出现是与相关的条件有密切的关系,在四年级时,教材安排游戏公平的活动,让学生认识等可能性。
本册教材安排的综合应用内容将进一步整合数与代数、空间与图形、统计三个领域的内容,并进一步加强课堂数学知识与现实生活中的实际问题的结合,以提高学生综合实践的能力。本册教材安排了三个集中性的专题综合应用内容:在“数学与交通”的专题综合应用活动中,安排了“相遇”、“旅游费用”以及“看图找关系”三个小专题的内容,通过这些活动,以提高学生解决问题的策略思想;在“尝试与猜测”的专题综合应用活动中,安排了“鸡兔同笼”与“点阵中的规律”的两个小专题,通过这两个活动,引导学生关注与思考一些日常生活中的现象,从中能发现一些特殊的规律。通过对生活中一些现象分析与解决,让学生进一步体会数学与日常生活的密切联系。二、课时安排:(见附表)
第一单元:小数除法
教学目的要求
1、通过具体情境,进一步理解除法的意义,探索并掌握小数除以整数的计算方法。
2、通过“打电话”的情境,利用已有知识,经历探索除数是小数的除法计算方法的过程,体会转化的数学思想。
3、通过人民币和外币的兑换活动,掌握求积、商近似值的方法,能够按要求求出积、商的近似值。
4、通过计算蜘蛛和蜗牛每分爬行多少米,发现余数和商的特点,知道什么是循环小数,并会用四舍五入法对循环小数取近似值。
重点与难点说明
小数的除法,分为三种情形分别进行探索:一是小数除以整数,二是整数除以整数;三是小数或整数除以小数。
小数除以整数的情形,结合实例,探索并理解可以把被除数当成整数,变成整数的除法求得商后,只要商的小数点与被除数的小数点对齐就可以了。
整数除以整数的情形,在以往学过的整数的除法中,只能求得整数的商及余数。但在小数的除法中,整数的余数可以化为更小的单位(小数单位),因此可以继续平均分(做除法),得到的商是小数。所以,今后遇到整数除以整数的情形,可以把被除数(整数)的末尾添上小数点,在这个小数点后面可以添上所需要的“0”。这样,整数除以整数的情形又转化为上述小数除以整数的情形了。
除数是小数的情形,应用商不变规律,根据把除数变成整数的需要,把被除数和除数扩大相同的倍数,就把除数是小数的除法转化成上述除数是整数的除法了。
在实际应用中,对于复杂的小数的乘法或除法运算,可以用计算器进行计算,并且会根据要求,取积或商的近似值。
认识循环小数,结合竖式除法的过程,体会出现了什么情况,不用再除下去,就能知道商一定是循环小数。
第三单元目标:
数学五年级上册教学计划 篇九
一、指导思想:
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、班级学生情况分析
全班共有学生36人,大部分学生对数学有上进心,但接受能力还有待提高,学习态度还需不断端正。有部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
三、 教材分析
1.“简单的统计(一)”
统计是数学的。一个重要分支。随着社会的进步和科学技术的不断发展,统计的应用范围日益广泛。在工农业生产和科学实验中,我们需要不断地总结和改进工作,然而仅凭经验和感觉是不能把握事物的发展的。我们还经常需要通过数量的分析来评价事物的发展情况,并从中发现规律,指导以后的工作。统计工作就是把工作中有关的大量数据收集起来,经过整理、计算和分析比较,来发现事物内部的规律,来研究和评价事物的发展情况。
本单元教学收集原始数据和分类整理的方法,编制和分析各种统计表的方法。最后,教学求较复杂的求平均数的方法。将来在第十二册中还要进一步教学统计表和统计图等知识。
2、长方体和正方体
学生在低年级初步认识了一些简单的立体几何图形,已经能够识别出长方体、正方体、圆柱和球等形体。在前面几册教材中还学习了一些平面几何图形的特征,以及它们的周长和面积的计算。本单元教材是在此基础上教学的。这是学生比较深入地研究立体几图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以是学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。另外,长方体和正方体体积的计算,也是学生形成体积的概念、掌握体积的计量单位和计算各种几何形体体积的基础。
3.约数和倍数
本单元教材是在学生学过整数的四则运算的基础上进行教学的。它是以后学习约分、通分、分数四则运算的基础。通过这部分内容的教学,使学生获得一些有关整数的知识,即数论中最初步的知识,还为学生到中学学习因式分解做些准备,使学生加深对整数的认识,还有助于发展他们的抽象思维。本单元教材概念较多,内容比较抽象。重点是求最大公约数和最小公倍数。由于目前在实际教学中奎逊耐彩条的运用并不是很广泛,根据教学反馈的情况来看,用图解的方式也完全可以使学生理解分解质因数的原理,奎逊耐彩条在此的作用并不十分显著。因此,此次修订把利用奎逊耐彩条来分解质因数的有关内容删去了。但是在讲约数、倍数、最大公约数等内容时,仍保留奎逊耐彩条的形式,帮助学生借助直观进行理解。
4.分数的意义和性质
这部份内容是在学生对分数已经有了初步的认识,掌握了约数和倍数、最大公约数和最小公倍数等知识的基础上进行教学的。本单元是学生系统学习分数的开始。通过这部分内容的教学,使学生进一步理解分数的意义和性质,为今后学习分数四则运算和解答分数运用题打好基础。本单元是分数教学的重点,必须使学生切实学好。根据《大纲(试用修订版)》的要求,删去“分数的加法和减法”单元中的“分数、小数加减混合运算”。但是,我们认为分数和小数的互化仍是一个很重要的内容,需要让学生掌握,故把这部分内容移至本单元。
5.分数的加法和减法
这部分内容是在学生掌握了整、小数加、减法的意义及其计算法则,分数的意义和性质,以及在第七册学过的简单的同分母分数加、减法计算的基础上进行教学的。
四、 教学目标
1、知识与技能
经历收集、整理、描述和分析数据的过程,掌握一些数据处理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
2、数学思考
能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。
在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
3、解决问题
能从现实生活中发现并提出简单的数学问题。
能探索出解决问题的有效方法、并试图寻找其他方法。
能借助计算器解决问题。
在解决问题的活动中,初步学会与他人合作。
能表达解决问题的过程,并尝试解释所得的结果。
具有回顾与分析解决问题过程的意识。
读书破万卷下笔如有神,以上就是众鼎号为大家整理的9篇《小学五年级数学教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。