首页 > 教师教学 > 教学反思 >

《鸡兔同笼问题》教学反思优秀8篇

众鼎号分享 61091

众鼎号 分享

鸡兔同笼是中国古代的数学名题之一。 大约在1500年前,《孙子算经》中就记载了这个有趣的问题。这次漂亮的小编为亲带来了8篇《《鸡兔同笼问题》教学反思》,如果能帮助到您,众鼎号将不胜荣幸。

《鸡兔同笼》教案 篇一

教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

教学目标:

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

教学重点:

会用画图法、列表法和假设法解答“鸡兔同笼”问题。

教学难点:

用合理的方法解答生活中的“鸡兔同笼”问题。

教具准备:

多媒体课件、表格等。

教学过程:

一、创设情境、揭示课题。

1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2.播放视频,介绍:2015年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流

1.师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝 m.1mi.net 试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?

生:是什么样的假设法,让我们先睹为快!

师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?

生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。

生:鸡的只数为:35-12 = 23(只)。

师:还有别的做法吗?怎样解答?

生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数

《鸡兔同笼》教案 篇二

复习目标:

通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

复习重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

复习难点:在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导

学法:自主探究

课前准备:多媒体。

教学过程:

一、定向导学:2分钟

1、板书课题

2、复习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、方法归类:8分

1、填空:

一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。

一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。

鸡兔共五只,腿有( )条。

2、谁记得解决这类问题的方法呢?

学生回答

3、了解抬脚法

笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,

有94只脚。鸡和兔各有几只?

古人的算法可以用下图表示:

头… 35 脚减半 35 下减上 35 上减下 23 …鸡

脚… 94 47 12 12 …兔

三、解决问题:10分

(1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?

(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?

(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )

分。

(4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?

四、小结检测:20分钟

1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?

2、检测:

a、问答:

(1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。

b、解决问题

(1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?

(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)

(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

小学数学《鸡兔同笼》教案 篇三

教学内容:

数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析、假设法)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

二、合作探究,构建新知(15分)

1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

2、先猜一猜,可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

鸡兔可能各有多少只?你想怎样解决这个问题呢?

找几名同学说一说解决的办法。

同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

4、学生独立完成,教师巡视。

5、学生汇报:

1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。(课件贴出表格)

你们认为这种方法有什么特点?请这些同学为他们的方法命名。(板书:逐一列表法)

2)、哪个同学与他们的列表方法不同?(汇报,说出是如何确定第一组数据的,验证后发现了什么问题,你的调整策略,在调整过程中有什么发现?当计算验证腿数多时说明什么?应该怎样调整?相反呢?)

还有那些同学与他的方法相同或类似(你是怎样想到这种方法的),补充调整方法和策略以及自己的发现。(课件贴出表格)

请同学们为自己的方法命名。问:你们觉得这种方法怎么样?(简便、快捷)

(板书:跳跃列表法)

3)、哪个同学还有不同的列表方法呢?你是怎样想到这种列表法的(说出理由)

还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?请同学们命名。(课件贴出表格)

( 板书:取中列表法。)

4)、回顾一下我们的解题思路和方法。(相机板书:猜测、验证、调整)

师:用列表法解决问题,要想做到又快又准确,你们认为应该要注意些什么

问题?

5)、同学们还有其他的方法解决这道题吗?

直观画图法:谁听懂他的方法了?能再说说吗?你觉得这样做怎么样? (画图的方法非常便于观察、非常容易理解。) 还有什么方法吗?

6)算术法启发学生思考;展示学生的个性解法并以学生的名字来命名。

初步小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

【设计意图:在问题情境中探究解决问题的方法,给学生足够的空间经历数学知识的形成过程,体验猜测—验证—调整—再验证—再调整的过程,从而得到解决鸡兔同笼问题的一般策略。】

三、历史激趣、巩固新知(9分)

同学们,你们知道古人是如何解答鸡兔同笼问题的吗?刚才的题目(出示):今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何? 书中给出了一种巧妙的解法,今译为:

94÷2-35=12(头)

兔的头数

35-12=23(头)

鸡的头数 这就是最早的鸡兔同笼问题。

看了这段资料,你有什么想法,你有什么想说的吗?

(为我们的祖先感到骄傲,其实老师也为你们感到骄傲,)你们在这么短的时间

内就想出了这么多解决问题的办法,你们很了不起! 。

过渡语:同学们有信心运用自己喜欢的列表方法解决1500多年前《孙 子 算经》中的原题吗?出示:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 学生汇报:

你采用的是那种列表方法

为什么要选用这种列表方法?

谁有不同的列表方法?同学们有什么新发现

(学生汇报后,教师追问:就这道题而言,你认为哪种方法解决最好?)日本人说的【设计意图:史书解题方法意在进行爱国主义教育,激励学生;解决原题巩固一道基本题型,进行解决问题方法的优化,对于数目较大的题目采用取中或跳跃列举法更为合适。】

四、分析应用,提高升华(5分)

过渡语:后来鸡兔同笼问题由我国传到了日本变成了龟鹤问题,日本人说的龟鹤和我们说的鸡兔有联系吗?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,那还可能是什么问题呢到我们的实际生活中去看一看,请看题;(课件)

【设计意图:学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题,分析两道生活中的鸡兔同笼问题,目的在于进一步明确类似鸡兔同笼问题的数量关系,为解决问题垫定基础。】

1、在我们日常生活消费中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

全班38人去游湖,共租8条船,每条船都坐满了,大船限坐6人小船限坐4人,大船、小船各租了几条?

(生:4人相当于鸡的两条腿,8人相当于兔的四条腿, 8条船相当于鸡兔的总头数,38人相当于腿的总条数;)

2、在活动安排中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

新星小学“环保额、卫士”小分队12人参加植树活动,男同学每人植树3棵,女同学每人植树2棵,一共植树32棵,男女同学各多少人?

实践应用,解决问题

3、重解《孙子算经》中的鸡兔同笼问题(5分)

尝试运用你喜欢的方法独立完成此题

学生汇报:

你采用的是那种列表方法

为什么要选用这种列表方法?

谁有不同的列表方法?

过渡语:老师相信同学们一定会耐心细致的做每一件事请。

【设计意图:此练习题的出示目的是使学生发现问题,解决问题,并且明确逐一列举法的有势好处。】

五、生活拓展、谈谈收获(3分)

生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗? 作业:创编一道生活中的鸡兔同笼问题。(要求:在小组里交流一下创编得体是否正确合理,同桌交换解决。)

【设计意图:希望同学们留意生活中的数学问题,体会数学的价值。】

结束语:数学无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

板书设计:

鸡兔同笼

猜测

验证

调整

逐一列举法

跳跃列举法

取中列举法

直观画图法

假设算术法

假设方程法

《鸡兔同笼》教案 篇四

教学目标:

(一)知识技能

1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

(二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

(三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

教学重点:

使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

教学难点:

使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

教学过程:

一、激趣导入 渗透方法

1、 出示绕口令

1只小鸡2条腿, 1只兔子4条腿;

2只小鸡( )条腿, 2只兔子( )条腿;

3只小鸡( )条腿, 3只兔子( )条腿。……

【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

二、独立探究 解决问题

刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

1、出示例题,读儿歌

菜市场里真热闹,鸡兔同笼喔喔叫。

数数头儿有8个,数数腿儿26。可知鸡兔各多少?

2、 指名说说已知条件和问题。

引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿

3、你们愿意自己尝试解答吗?

每个同学有2个选择

第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

第二:用填表的方法,看能否找到答案。

(如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】

三、小组交流 开阔思路

小组讨论的要求是

1、给组内同学讲一讲你解题的方法和过程。

2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

四、全班交流 成果共享

1、画图法

预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡

为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

你认为这两种画法哪种简单?

【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

2、列表法

教师让学生在实物投影下讲解列表的方法。

(预设3种列表法)

3、逐一列表法

情况1:鸡的只数 1 2 3 4 5 6 7

兔的只数 7 6 5 4 3 2 1

共有足数 30 28 26 24 22 20 18

情况2

鸡的只数 1 2 3

兔的只数 7 6 5

共有足数 30 28 26

情况1与情况2进行比较

确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

情况3:兔的只数 1 2 3 4 5 6 7

鸡的只数 7 6 5 4 3 2 1

共有足数 18 20 22 24 26 28 30

情况4:兔的只数 1 2 3 4 5

鸡的只数 7 6 5 4 3

共有足数 18 20 22 24 26

情况3与情况4进行比较

确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

情况2与情况4进行比较

哪个列表能快速找到答案,为什么?

4、取中列表法

鸡的只数 4 3

兔的只数 4 5

共有足数 24 26

5、跳跃列表法

鸡的只数 1 3

兔的只数 7 5

共有足数 30 26

(如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

五、灵活运用 巩固方法

1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

用你刚才没有尝试过的方法解决

2、设计意图:

1、使学生感受我国传统的数学文化。

2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

六、总结收获 畅谈体会

通过今天的学习,你有什么收获?

鸡兔同笼教学设计 篇五

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

二、合作探究,构建新知(15分)

1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

2、先猜一猜,可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

鸡兔可能各有多少只?你想怎样解决这个问题呢?

找几名同学说一说解决的办法。

同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

4、学生独立完成,教师巡视。

5、学生汇报:

1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。

《鸡兔同笼》教案 篇六

教学目标:

1、知识与技能

初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法

通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观

培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

教学重点:

用画图法和列表法解决相关的实际问题。

教学难点:

体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

教学准备:

课件

教学流程:

(一)问题引入,揭示课题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

问:这段话是什么意思?谁能说说?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)

(二)主动探究、合作交流、学习新知

师:说明为了研究方便,我们先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?

师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流。

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1、 画图法:

给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。

总结:画图的方法非常便于观察、非常容易理解。

2、列表法:(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

3、假设法:(随学生能否出现此种情况作为机动出示)

教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

板书:方法一:假设8只都是鸡,那么兔有:

(26-8x2)÷(4-2)=5(只)

鸡有8-5=3(只)

同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

板书:方法二:假设8只都是兔,那么鸡有:

(4x8-26)÷(4-2)=3(只)

兔有8-3=5(只)

小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。

现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

(三)解决实际问题、课堂延伸

1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

看看我国古人是怎么解这个题的。

2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?

(四)课堂小结

通过今天的学习,你有哪些收获?

师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。

《鸡兔同笼》教案 篇七

教学目标:

1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

教学重点:

会用假设法和方程法解答“鸡兔同笼”问题。

教学难点:

明白用假设法解决“鸡兔同笼”问题的算理。

教学用具:

多媒体课件。

教学过程:

一、创设情境,引入新课。

1、引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1.列举法。

可以有目的的先展示这种方法。(多媒体展示。)

学生票数(张)成人票数(张)钱数(元)

2525250

2426252

2327254

2228256

2129258

2030260

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

2.假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。

列方程为:6x+4(50-x)=260

(解略)

4.学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

温馨提示:

A.先让学生认真读题,(同桌讨论)。

B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

②小组内交流算法。

③全班交流。

【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

3、全课小结:

回顾总结,引发思考

本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

师总结:

这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案 篇八

[教学目标]

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学重、难点]

通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学过程]

一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

1、小组活动

2、交流方法

二、做一做

独立完成第1—3题,并交流解决的方法。

第4题的答案有多种,启发学生找出不同的`答案。

讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

[板书设计]

鸡兔同笼问题

方法1方法2方法3方法4

读书破万卷下笔如有神,以上就是众鼎号为大家整理的8篇《《鸡兔同笼问题》教学反思》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:真理诞生于一百个问号之后教学反思【4篇】

下一篇:返回列表