首页 > 教师教学 > 教案模板 >

三角形面积计算公式的推导教案优秀3篇

众鼎号分享 136173

众鼎号 分享

作为一名优秀的人民教师,教学是重要的工作之一,写教学反思能总结我们的教学经验,那么你有了解过教学反思吗?下面是小编辛苦为朋友们带来的3篇《三角形面积计算公式的推导教案》,如果能帮助到您,众鼎号将不胜荣幸。

《三角形的面积》教学反思 篇一

《三角形的面积》是一节传统的教学内容。这部分内容是在学习了长方形面积、平行四边形面积公式的基础上进行教学的。主要是引导学生通过三角形形面积公式的推导去理解和掌握三角形面积计算公式。根据新课程新理念的要求教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。

在整个教学过程中,我做到了以下几点:

一、猜测入手,激发学习兴趣

三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事半功倍的教学效果。

二、小组结合动手操作

猜测后,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

三、应用公式解决生活中的问题

新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。如:求绿地面积,求红领巾面积,求安全警示牌面积,最后又回到求公园绿地面积,每个环节都是在解决生活中的实际问题,使学生学习不但互动有趣,而且富有生活气息。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经作到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此,本课的总结中我应该点出:这样的思考方法在数学上叫做转化。当我们遇到一个新问题时,就可以动脑筋把它转化成我们以前学过的旧知识。这样就起到了“画龙点睛”的作用,可惜我疏忽了。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。

今后我要认真学习新的课程理念,认真钻研教材,研究学生,设计适合学生自身特点的教学方法,以学生为主体,充分调动学生学习的主动性和积极性,从而培养学生的创造能力。努力提高自身的业务能力。

角形面积计算数学教案 篇二

教学内容:

人教版9册 三角形面积公式推导部分

教学目的:

1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

教学过程:

一、阅读质疑。

先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

1厘米

学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

(1)数方格怎么求三角形的面积?

(2)不数方格怎么求三角形的面积?有没有一个通用公式?

(3)能把三角形也转化成我们学过的图形求面积吗?

(4)转化成的这些图形跟三角形有什么关系吗?

(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)

二、点拨激思

1、数方格的问题

学生根据学习材料可以解答用数方格的方法求三角形的面积。

老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。

(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

2、转化的问题

你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

三、探索解疑

学生操作,讨论,汇报。

1、转化的图形

学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

2、解决转化前后图形间的关系

(1)大小的关系

通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S÷2。一个三角形转化成的图形跟三角形关系是S =S

(2)底和高的关系

拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2

师:思路真清晰,为什么÷2,谁还想说。

(学生依次讲拼成的长方形,正方形这两种情况)

(3)公式推导

师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

生:底×高÷2

师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

生:S=a×h÷2

(4)推导拓展

师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2

师:这个方法怎样,谁来评价一下。学生评价,太棒了。

生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2

(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

归纳小结

出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

总析:本节课有以下两个特点

1、充分体现了“问题意识的培养”。

老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

2、重视研究问题的过程。

这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

《三角形的面积》教学反思 篇三

“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。

在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。

充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。

本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。

纵观这个教学过程,初步体现了提出问题———大胆猜测———反复验证———总结规律———灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展。

以上内容就是众鼎号为您提供的3篇《三角形面积计算公式的推导教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《爬山虎的脚》教案设计【优秀9篇】

下一篇:返回列表