高中数学必修2教案优秀8篇
作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?这里给大家分享一些关于高中数学必修2教案,方便大家学习。众鼎号为您精心收集了8篇《高中数学必修2教案》,亲的肯定与分享是对我们最大的鼓励。
高中数学必修2教案 篇一
一、教学目标
1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(四)巩固深化
练习:课本P7 练习1、2; 课本P8 习题1.1 第1、2、3、4、5题
(五)归纳整理:由学生整理学习了哪些内容
高中数学必修2教案 篇二
教学目标
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重难点
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教学过程
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式
在此基础上,引导学生认识基本不等式。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
4、探究基本不等式证明方法:
[问]如何证明基本不等式?
(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)
方法一:作差比较或由
展开证明。
方法二:分析法(完成课本填空)
设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本。在教学中要让学生学会认真看书、用心思考,养成讲讲议议、
动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。
点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
5、探究基本不等式的几何意义:
借助初中阶段学生熟知的几何图形,引导学生
几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
四、探究归纳
下列命题中正确的是
结论:
若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;
若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。
简记为:“一正、二定、三相等”。
五、领悟练习:
公式应用之二:(最优化问题)
设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中
(1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?
(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?
六、反思总结,整合新知:
通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要
请教?
设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平。
老师根据情况完善如下:
两种思想:数形结合思想、归纳类比思想。
三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”
高中数学必修2优秀教案 篇三
1教学目标
1、知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法。
2、能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系。
2学情分析
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
3重点难点
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系。
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1、棱长为a的正方体表面积为__________.
2、长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3、长方体、正方体的侧面展开图为__________.
4、圆柱的侧面展开图为__________.
5、圆锥的侧面展开图为__________.
(二)。尝试学习
1、柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示。
(2)面积:柱体的表面积S表=S侧+2S底。特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
2、锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示。
(2)面积:锥体的表面积S表=S侧+S底。特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
3、台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示。
(2)面积:台体的表面积S表=S侧+S上底+S下底。特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
(三)。互动课堂
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
A. B.ab C.(+)ab D.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
A.2π B. C.6π D.9π
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积。
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A. B.2 C. D.
(四)。巩固练习:
1、一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2、已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2)。
3、如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
A.81π B.100π C.14π D.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和。
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法。所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解。
(3)求圆柱的侧面积只需利用公式即可求解。
(4)求棱锥侧面积的一般方法:定义法。
(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.
(6)求棱台侧面积的一般方法:定义法。
(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.
五、当堂检测
1、(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
A.32 B.16+16
C.48 D.16+32 网]
2、(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
A.180 B.200 C.220 D.240
3、(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
A.6 B.6π C.3π D.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
1.3 空间几何体的表面积与体积
课时设计 课堂实录
1.3 空间几何体的表面积与体积
1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1、棱长为a的正方体表面积为__________.
2、长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3、长方体、正方体的侧面展开图为__________.
4、圆柱的侧面展开图为__________.
5、圆锥的侧面展开图为__________.
(二)。尝试学习
1、柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示。
(2)面积:柱体的表面积S表=S侧+2S底。特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
2、锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示。
(2)面积:锥体的表面积S表=S侧+S底。特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
3、台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示。
(2)面积:台体的表面积S表=S侧+S上底+S下底。特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
(三)。互动课堂
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
A. B.ab C.(+)ab D.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
A.2π B. C.6π D.9π
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积。
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A. B.2 C. D.
(四)。巩固练习:
1、一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2、已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2)。
3、如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
A.81π B.100π C.14π D.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和。
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法。所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解。
(3)求圆柱的侧面积只需利用公式即可求解。
(4)求棱锥侧面积的一般方法:定义法。
(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.
(6)求棱台侧面积的一般方法:定义法。
(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.
五、当堂检测
1、(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
A.32 B.16+16
C.48 D.16+32 网]
2、(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
A.180 B.200 C.220 D.240
3、(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
A.6 B.6π C.3π D.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
高一必修二数学教案 篇四
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
高一必修二数学教案41、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高中数学必修2优秀教案 篇五
一、知识点归纳
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征
1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台。
3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球。
(二)空间几何体的三视图与直观图
1、投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。
2、三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等
3、直观图:直观图通常是在平行投影下画出的空间图形。
4、斜二测法:在坐标系 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
(三)空间几何体的表面积与体积
1、空间几何体的表面积
①棱柱、棱锥的表面积: 各个面面积之和
②圆柱的表面积
③圆锥的表面积 ④圆台的表面积
⑤球的表面积 ⑥扇形的面积公式 (其中 表示弧长, 表示半径)
2、空间几何体的体积
①柱体的体积
②锥体的体积
③台体的体积
④球体的体积
二、练习与巩固
(1)空间几何体的结构特征及其三视图
1、下列对棱柱说法正确的是( )
A.只有两个面互相平行 B.所有的棱都相等
C.所有的面都是平行四边形 D.两底面平行,且各侧棱也平行
2、一个等腰三角形绕它的底边所在的直线旋转360。形成的曲面所围成的几何体是( )
A.球体 B.圆柱 C.圆台 D.两个共底面的圆锥组成的组合体
3、下列命题正确的是( )
A.平行与圆锥的一条母线的截面是等腰三角形
B. 平行与圆台的一条母线的截面是等腰梯形
C. 过圆锥母线及顶点的截面是等腰三角形
D. 过圆台的一个底面中心的截面是等腰梯形
4、棱台不具备的特点是( )
A.两底面相似 B. 侧面都是梯形 C. 侧棱都相等 D. 侧棱延长后交于一点
5、以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是( )
A.球体 B.圆柱 C.圆锥 D.圆柱、圆锥及球体的组合体
6、将装有水的长方体槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体是 ( )
A.棱柱 B.棱台 C.棱柱与棱台的组合体 D.不能确定
7、下列命题正确的是 ( )
A.矩形的平行投影一定是矩形 B.梯形的平行投影一定是梯形
C.两条相交直线的平行投影可能平行
D.一条线段中点的平行投影仍是投影线段的中点
8、将等腰三角形绕它的底边上的高旋转一周, 形成的几何体一定是( )
A.圆锥 B.圆柱 C.圆台 D.上均不正确
9、用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是( )
A.圆锥 B.圆柱 C. 球体 D. 以上都可能
10、下列图形中,不是三棱柱的展开图的是( )
11、三视图均相同的几何体有( )
A.球 B.正方体 C.正四面体 D.以上都对
12、下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①② B.①③ C.①④ D.②④
13、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A. 棱台 B. 棱锥 C. 棱柱 D. 都不对
(2)空间几何体的表面积和体积
1、圆柱、圆锥、圆台的侧面展开图及侧面面积公式。
2、空间几何体的表面积和体积公式。
名称
几何体
表面积
体积
柱体
(棱柱和圆柱)
S表面积=S侧+2S底
V=________
锥体
(棱锥和圆锥)
S表面积=S侧+S底
V=________
台体
(棱台和圆台)
S表面积=S侧+S上+S下
V=_________
____________
球
S=________
V=πR3
一、选择题
1、已知三个球的体积之比为1:8:27,则它们的表面积之比为( )
A.1:2:3 B.1:4:9 C.2:3:4 D.1:8:27
2、有一个几何体的正视、侧视、俯视图分别如图所示,则该几何体的表面积为 ( )
A. B. C. D.
3、棱长都是 的三棱锥的表面积为( )
A. B. C. D. 4.长方体的一个顶点上三条棱长分别是 ,且它的 个顶点都在同一球面上,则这个球的表面积是( )
A. B. C. D.都不对
5、三角形ABC中,AB= ,BC=4, ,现将三角形ABC绕BC旋转一周,所得简单组合体的体积为( )
A. B. C.12 D.
6、某四棱锥的三视图如图所示,该四棱锥的表面积是( )
A.32 B. C.48 D.
7、设正方体的棱长为,则它的外接球的表面积为( )
A. B.2π C.4π D.
8、已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 ( )
。 。 。 。
9、长方体的一个顶点上三条棱长分别是 ,且它的 个顶点都在
同一球面上,则这个球的表面积是( )
A. B. C. D. 都不对
10、正方体的内切球和外接球的半径之比为( )
A. B. C. D.
二、填空题
1、 中, ,将三角形绕直角边 旋转一周所成
的几何体的体积为____________。
2、 长方体的共顶点的三个侧面面积分别为 ,则它的体积为___________.
3、正方体 中, 是上底面 中心,若正方体的棱长为 ,
则三棱锥 的体积为 。
三、解答题
1、将圆心角为 ,面积为 的扇形,作为圆锥的侧面,求圆锥的表面积和体积。
2、已知圆台的上下底面半径分别是 ,且侧面面积等于两底面面积之和,
求该圆台的母线长。
3、(如图)在底半径为 ,母线长为 的圆锥中内接一个高
为 的圆柱,求圆柱的表面积
4、已知一个空间几何体的三视图如图所示,其中正视图、侧
视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个
几何体的表面积。 Key:11
5、已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形。
求该几何体的体积V; (2)求该几何体的侧面积S
高中数学必修2教案 篇六
讲义1: 空 间 几 何 体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构。
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征。
三、教学难点:柱、锥、台、球的结构特征的概括。
四、教学过程:
(一)、新课导入:
1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算。
(二)、讲授新课:
1. 教学棱柱、棱锥的结构特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成
的几何体叫棱柱。 → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线。
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。
结合图形认识:底面、侧面、侧棱、顶点、高。 → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?
★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
2. 教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥。
→结合图形认识:底面、轴、侧面、母线、高。 → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体。
④ 观察书P2若干图形,找出相应几何体;
三、巩固练习:
1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径。
2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长。
3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱。
(四)、 教学棱台与圆台的结构特征:
① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?
② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高。讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?
③ 讨论:棱台、圆台分别具有一些什么几何性质? 22
★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点。
★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等。
④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体。 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)
2.教学球体的结构特征:
① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体。结合图形认识:球心、半径、直径。→ 球的表示。
② 讨论:球有一些什么几何性质?
③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)
3. 教学简单组合体的结构特征:
① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?
② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体。
4. 练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长。 (补充平行线分线段成比例定理)
(五)、巩固练习:
1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?
2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高
3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高。
★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
★ 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)
★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)
▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义2、空间几何体的三视图和直视图
一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。 掌握斜二测画法;能用斜二测
画法画空间几何体的直观图。
二、教学重点:画出三视图、识别三视图。
三、教学难点:识别三视图所表示的空间几何体。
四、教学过程:
(一)、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。不识庐山真面目,只缘身在此山中。” 对
于我们所学几何体,常用三视图和直观图来画在纸上。
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形。 用途:工程建设、机械制造、日常生活。
(二)、讲授新课:
1. 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形。
③ 平行投影:在一束平行光线照射下形成的投影。 分正投影、斜投影。
→讨论:点、线、三角形在平行投影后的结果。
2. 教学柱、锥、台、球的三视图:
① 定义三视图:正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图
② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,
并讨论所反应的长、宽、高
③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自
左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果。 → 正视图、侧视图、俯视图
③ 试画出:棱柱、棱锥、棱台、圆台的三视图。 (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状。(试变化以上的三视图,说出相应几何体的摆放)
3. 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的
三视图。
② 从教材P16思考中三视图,说出几何体。
4. 练习:
① 画出正四棱锥的三视图。
④ 画出右图所示几何体的三视图。
③ 右图是一个物体的正视图、左视图和俯视图,
试描述该物体的形状。
(三)复习巩固
人教版高中数学必修2教案 篇七
讲义1: 空 间 几 何 体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构。
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征。
三、教学难点:柱、锥、台、球的结构特征的概括。
四、教学过程:
(一)、新课导入:
1、 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算。
(二)、讲授新课:
1、 教学棱柱、棱锥的结构特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成
的几何体叫棱柱。 → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)。
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线。
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。
结合图形认识:底面、侧面、侧棱、顶点、高。 → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?
★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
2、 教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥。
→结合图形认识:底面、轴、侧面、母线、高。 → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体。
④ 观察书P2若干图形,找出相应几何体;
三、巩固练习:
1、 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径。
2、已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长。
3、正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱。
(四)、 教学棱台与圆台的结构特征:
① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?
② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高。讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?
③ 讨论:棱台、圆台分别具有一些什么几何性质? 22
★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点。
★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等。
④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体。 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)
2.教学球体的结构特征:
① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体。结合图形认识:球心、半径、直径。→ 球的表示。
② 讨论:球有一些什么几何性质?
③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)
3、 教学简单组合体的结构特征:
① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?
② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体。
4、 练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长。 (补充平行线分线段成比例定理)
(五)、巩固练习:
1、 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?
2、 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高
3、 若棱长均相等的`三棱锥叫正四面体,求棱长为a的正四面体的高。
★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
★ 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)
★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)
▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义2、空间几何体的三视图和直视图
一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。 掌握斜二测画法;能用斜二测
画法画空间几何体的直观图。
二、教学重点:画出三视图、识别三视图。
三、教学难点:识别三视图所表示的空间几何体。
四、教学过程:
(一)、新课导入:
1、 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2、 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。不识庐山真面目,只缘身在此山中。” 对
于我们所学几何体,常用三视图和直观图来画在纸上。
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形。 用途:工程建设、机械制造、日常生活。
(二)、讲授新课:
1、 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形。
③ 平行投影:在一束平行光线照射下形成的投影。 分正投影、斜投影。
→讨论:点、线、三角形在平行投影后的结果。
2、 教学柱、锥、台、球的三视图:
① 定义三视图:正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图
② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,
并讨论所反应的长、宽、高
③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自
左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果。 → 正视图、侧视图、俯视图
③ 试画出:棱柱、棱锥、棱台、圆台的三视图。 (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状。(试变化以上的三视图,说出相应几何体的摆放)
3、 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的
三视图。
② 从教材P16思考中三视图,说出几何体。
4、 练习:
① 画出正四棱锥的三视图。
④ 画出右图所示几何体的三视图。
③ 右图是一个物体的正视图、左视图和俯视图,
试描述该物体的形状。
(三)复习巩固
高中数学必修2教案 篇八
一、教学目标
1、知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2、过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3、情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的。投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15 练习1、2; P20习题1.2 [A组] 2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题1.2 [A组] 1。
以上内容就是众鼎号为您提供的8篇《高中数学必修2教案》,能够帮助到您,是众鼎号最开心的事情。