高三数学复习资料精选3篇
随着高考考试的来临,你做好数学的复习准备了吗?下面是©无忧考网收集整理的高三数学复习资料以供大家学习! 高三数学复习资料(一) 1。集合的含义与表示。 (1)了解集合的含义、元素与集合的“属于”关系。 (2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。 2。集合间的基本关系。 (1)理解集合之间包含与相等的含义,能识别给定集合的子集。 (2)在具体情境中,了解全集与空集的含义。 3。集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合它山之石可以攻玉,下面众鼎号为您精心整理了3篇《高三数学复习资料》,希望朋友们参阅后能够文思泉涌。
高三数学复习知识点 篇一
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型。
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高三数学复习资料 篇二
1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;
2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在。
3、渐近线,(垂直、水平或斜渐近线)。
4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。
高三数学复习资料(四)
1、求数列极限
求数列极限可以归纳为以下三种形式。
抽象数列求极限
这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
求具体数列的极限,可以参考以下几种方法:
a.利用单调有界必收敛准则求数列极限。
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。
b.利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
求项和或项积数列的极限,主要有以下几种方法:
a.利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
lb.利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
c.利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。
d.利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。
高三数学复习资料 篇三
1、集合的含义与表示。
(1)了解集合的含义、元素与集合的“属于”关系。
(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
2、集合间的基本关系。
(1)理解集合之间包含与相等的含义,能识别给定集合的子集。
(2)在具体情境中,了解全集与空集的含义。
3、集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
(3)能使用韦恩(Venn)图表达集合的关系及运算。
读书破万卷下笔如有神,以上就是众鼎号为大家带来的3篇《高三数学复习资料》,能够帮助到您,是众鼎号最开心的事情。