首页 > 教师教学 > 教学反思 >

圆的周长教学反思优秀4篇

众鼎号分享 55926

众鼎号 分享

作为一位刚到岗的人民教师,教学是我们的工作之一,借助教学反思可以快速提升我们的教学能力,那么你有了解过教学反思吗?以下是人见人爱的小编分享的4篇《圆的周长教学反思》,希望能够给您提供一些帮助。

六年级数学教案《圆的周长》 篇一

教学内容:教材第62-64页圆的周长。

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:

①要做好标记;

②不能滑动,要滚动;

③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:

①一定要将绳子拉直再测量;

②绳子是无弹性的。

(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

经过对比,感受滚动法和绕绳法两种测量方法的局限性。

3.操作实验,探究圆的周长和直径的关系。

(1)观察猜想:圆的周长与它的什么有关呢?

学生猜想:可能与它的直径或半径有关。

课件演示:圆的周长随着直径或者半径的变化而变化。

(2)动手操作,找出规律。

四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

周长c(cm)直径d(cm)的比值(保留两位小数)

3.14213.14

9.533.17

12.643.15

15.853.16

31.4103.14

(3)观察表中记录的测量数据和计算结果。

①你发现周长与直径的比值有什么特点?(比值都是三点几)

②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

(4)进一步验证圆的周长总是直径的3倍多一些。

下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

(5)认识圆周率。

①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

④感受文明,激发情感。

结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

(6)总结圆的周长的计算公式。

①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

③小结:圆的周长总是它直径的π倍。

(7)进一步明确复习题答案。

结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

4.学以致用。

课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

学生读题后自己完成。让学生板演。

c=2πr

2×3.14×33=207.24(cm)≈2(m)

1km=1000m

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

巩固练习,提升能力

1.完成教材64页1题。

2.判断。

(1)圆的周长是直径的3.14倍。()

(2)圆的周长等于圆周率与直径的乘积。()

(3)当半径为3cm时,圆的周长为18.84cm。()

(4)半圆的周长是圆周长的一半。()

3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

4.完成教材66页7、8题。

课堂总结,评价拓展

本节课你有什么收获?

布置作业,巩固新知

教材66页9、10题。

板书设计:

圆的周长

圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

圆的周长总是直径的3倍多一些。

圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

圆的周长教学设计 篇二

教学内容:小学数学实验教材十一册第107~108页“圆的周长”

教学目标:

1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2、培养学生的观察、比较、分析、综合及动手操作能力;

3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

4、结合圆周率的学习,对学生进行爱国主义教育。

教学重点:推导并总结出圆周长的计算公式。

教学难点:深入理解圆周率的意义。

教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

以及直尺、绸带,测量结果记录表,计算器,投影资料等

教学过程:

一、创设情境,引起猜想:

(一)激发兴趣

播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1、回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2、认识圆的周长:

那小灰)众鼎号●www.1126888.com(狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

(三)讨论正方形周长与其边长的关系

1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2、怎样才能知道这个正方形的周长?说说你是怎么想的?

3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

(四)讨论圆周长的测量方法

1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法:(板书)转化

曲直

4、创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

5、明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

(五)合理猜想,强化主体:

1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4、小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

二、实际动手,发现规律:

(一)分组合作测算

1、明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

(二)发现规律,初步认识圆周率

1、看了几组同学的测算结果,你有什么发现?

2、虽然倍数不大一样,但周长大多是直径的几倍?

3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3、这个倍数究竟是多少呢?我们来看一段资料。

(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4、理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5、解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1、如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长=直径×圆周率

C=πd

2、如果知道圆的半径,又该怎样计算圆的周长呢

板书:C=2πr

追问:那也就是说,圆的周长总是半径的多少倍

[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

三、引导质疑,深入领会(略)

四、巩固练习,形成能力

1、判断并说明理由:π=3。14()

2、选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a、大圆的圆周率大于小圆的圆周率;

b、大圆的圆周率小于小圆的圆周率;

c、大圆的圆周率等于小圆的圆周率。

3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

五、课内小结,扎实掌握

通过今天的学习,你有什么收获?

[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

六、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近

[总评]

纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

圆的周长教学设计 篇三

一、教学内容:圆的周长计算方法与应用

二、教学目的:

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.

2.培养学生的观察、比较、分析、综合及动手操作能力.

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.

4.结合圆周率的学习,对学生进行爱国主义教育.

三、教学重点:

1.理解圆周率的意义.

2.推导出圆的周长的计算公式并能够正确计算.

四、教学难点:理解圆周率的意义.

五、教学过程:

一、 创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

b.什么是圆的周长?请你摸一摸你手中圆的周长.

3、师:今天我们就来研究圆的周长。并出示课题

二、引导探究,学习新知

(一)推导圆的周长公式

1.学生讨论

(1)正方形的周长跟谁有关系?有什么关系?

(2)你认为圆的周长和谁有关系?

2.猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?

3.动手操作

(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。

师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

(2)整理并填写表格。单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

(3)汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?

(三)认识圆周率、介绍祖冲之

1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.

π≈3.14

2.介绍祖冲之

(四)归纳圆的周长公式

1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

师板书:c=πd

2.圆的周长还可以怎样求?由于d=2r 则:c=2πr

师板书:c=2πr

师问:圆的周长分别是直径与半径的几倍?

三、巩固应用,强化新知

(1)求下面各圆的周长.

1.d=2米 2.d=1.5厘米

(2)求下面各圆的周长.

1.r=6分米 2.r=1.5厘米

(二)判断题

1.π=3.14 ( )

2.计算圆的周长必须知道圆的直径。 ( )

3.只要知道圆的半径或直径,就可以求圆的周长. ( )

(三)选择题

1.较大的圆的圆周率( )较小的圆的圆周率.

a 大于 b 小于 c 等于

2.半圆的周长( )圆周长.

a 大于 b 小于 c 等于

(四)课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

(五)实践操作

请同学们,画一个周长是12.56厘米的圆,

先以小组为单位讨论:画多大?如何画?再操作。

四、课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

圆的周长教学设计 篇四

教学目的

1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。

教学重点、难点

推导圆周长计算公式,理解圆周率的意义。

教具准备

圆片、铁圈、绳子、直尺。

教学过程

一、把准认知冲突,激发学习愿望。

1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)

2、化曲为直,测量周长。

(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

讨论:

方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。

二、经历探究全程,验证猜想发现。

㈠圆的周长与直径有关系。

1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

3、总结:圆的直径的长短,决定了圆周长的长短。

㈡圆的周长与直径的倍数关系。

1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)

【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。

三、感受数学文化,激发情感体验。

1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。

2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

3、介绍计算机计算圆周率的情况。

4、教学圆周率:π≈3.14。

【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。

四、刷新应用能力,总结巩固新知。

1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

3、明辨是非:

(1)圆的周长和直径的比的比值叫做圆周率。( )

(2)大圆的圆周率大于小圆的圆周率。( )

(3)π的值等于3.14。( )

(4)半径是10厘米的圆,它的周长是31.4厘米。( )

4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。

【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。

以上就是众鼎号为大家整理的4篇《圆的周长教学反思》,希望可以启发您的一些写作思路。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:普罗米修斯教学反思【优秀10篇】

下一篇:返回列表