《圆的面积》教学设计【最新7篇】
作为一名教学工作者,可能需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?这次漂亮的小编为亲带来了7篇《《圆的面积》教学设计》,如果能帮助到亲,我们的一切努力都是值得的。
《圆的面积》教学设计 篇一
——《圆的面积》教学思路及教学课案评析
江苏省海安县洋蛮河镇新生小学(226625) 谭拥军
“研究性数学学习”是我县教育局教研室小学数学组立项的市级教研课题。我有幸于在课题中期研讨会上得到了教研室陈今晨主任(江苏省特级教师)、仲广群主任的帮助和指导,为中期研讨会提供了一堂《圆的面积》研讨课,上后我的感觉是焕然一新,不同于以往自己上的课,课堂中学生的主体地位得到了大大的加强。
现又正值全国教育界对“研究性学习”全面展开探索之际,有感于此,特将该课的教学思路及课案加评析整理奉上,企盼各位专家及同行不吝指教。
一、关于研究性学习的基本认识
研究性学习是先进的最新的学习方式,它改变了传统课堂教学中学生被动接受知识的状况,在教师的组织引导下,让学习者以发现问题、分析问题到解决问题这一类似于从事科学研究的态度、精神和方法对待数学学习。
要求在教学过程中,教师力求不把现成的答案或结论告诉给学生,而是试图创设出某种问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、阅读自学、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是*学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者。
二、教学思路
在县教研室的陈今晨主任、仲广群主任和县实验小学许卫兵校长、教导处贲友林主任、教科室顾荣主任等专家的帮助指导下,在对研究性学习有了进一步认识的基础上,本着遵循研究性学习的课题指导思想,我的备课思路如下:
1、课始的圆面积的概念教学,我采取了淡化的处理。因为学生对面积已经有了一定的认识,没有必要花大气力研究揭示。而是在学生自己提出问题——圆的面积怎样求之后,顺水推舟的简单揭示了概念。
2、本课的重点在圆面积的公式推导上。我采取了先猜想,再探索研究,最后分析概括小结出公式的方式。在此过程中让学生讨论、操作、观察、比较,从而达成培养学生最基本的研究能力。
3、在探索研究的过程中,我的思路是猜想——设想——操作——推导。其中的操作是放手让学生去尝试剪拼,学生失败很多,但即使失败了也不要紧,失败乃成功之母,成功的背后总是砌满了失败,研究的过程中失败总是伴随左右的。在学生的失败之中结合引导从而找到正确的剪拼方法拼成长方形,乃至于可能会有学生拼成其它图形来推导出圆的面积公式。
4、课尾,我淡化处理了具体求圆面积的教学,在公式推导出之后略加点拨,再结合实际生活练习。
三、课案及评析
教学内容:小学数学第十一册(苏教版)第六单元第123页124页“圆的面积”,例3。
教学目的:
1、使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、激发学生参与整个课堂教学活动的兴趣,让之在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、培养学生进行讨论、操作、观察、比较、分析和概括的基本能力。
4、渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面的割补及圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:多媒体课件;每人一把剪刀,4张圆纸片,1平方厘米的小正方形若干。
教学过程:
一、认识圆面积的内涵——提出问题
师:你认识圆吗?你已经知道了圆的那些知识?(生答。)回顾以前学的平面图形,你还想知道圆的什么知识?(圆的面积怎样求)
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?(教具:大圆)现在你能说出圆的面积指的是什么吗?
师:对,圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。
揭示课题:圆的面积
[评析:关于面积的意义,学生已经比较熟悉。课始抛开复习引入,由一句“你还想知道圆的什么知识?”让学生自己提出问题直接切入新知,很大程度上调动了学生主动探索、积极参与学习的兴趣激发了学生要解决问题的好胜心。另外,此处设计淡化了概念教学,仅让学生体验了一下圆面积就揭示了圆面积的内涵,简单扼要,直奔主题。]
二、讨论操作——分析问题
1、想想猜猜,估计大小
先请看,这是一个圆,我们以它的半径为边画一个正方形。
媒体显示:如下图
提问:正方形的面积怎样表示?(板书:r2)那么,请你想一想,与正方形比较一下,估计圆面积的范围?大约是正方形面积的多少倍呢?(老师把学生估计的答案都写在黑板上。)
师:很显然,猜想只能是个大概,要准确地求出圆的面积,还必须找到科学的方法才行。
[评析:猜测是科学研究方式的首要环节,然后才是探索研究,最后加以验证。此处的猜测是在提出问题之后进行的,迎合了儿童的心理,符合一般科学研究的规律。]
2、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如想不出就回忆长方形、平行四边形、三角形的面积公式推导过程。
如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
点出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
[评析:猜测是不精确的,还要讨论研究实践的方案。此处设计旨在调动学生的已有的知识经验来进行圆面积的探索,同时借助于媒体动态的演示,从而进一步强化“转化”策略。为下一步的尝试实现正迁移做好预设。]
3、分组操作,反思求悟
把学生分组根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况,让学生在视屏展示台上展示自己的做法。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
[评析:“让学生用自己独特的学习方式主动尝试研究。”、“科学研究的路上总是以失败为基石一步步迈向成功的。”这里教师给学生留下了独立尝试的机会,有失败,但也蕴藏着成功的希望。]
4、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪、拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
媒体出示大小不一的两个圆(动态显现画的过程)。哪个面积大?为什么?也就是说圆的面积与什么有关?
得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。(学生还是很难剪拼出。如有拼出的就让他起来介绍剪拼方法,并在视屏展示台上展示;如没有教师就引导等分剪拼。)
看来剪和拼还很有点难度,让老师和你一起来研究探讨吧。
[评析:学生是主体,教师是主导。在回顾旧知,领会转化思想之后,让学生尝试操作研究,看用以前的方法是否有效。在动手中认识只有剪拼有点希望,教师在其中还要起相应的指导作用。]
5、学生尝试加媒体显示,研究转化过程
首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。
(1)、四分法 全体学生在老师的或学生的提示下剪、拼,然后根据情形实物投影、媒体显示。认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点长方形的轮廓。
(2)、八分法 让学生在四分法的基础上剪拼,再媒体显示,比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像长方形了。
(3)、十六分法 直接媒体显示,上下更平,更像长方形 。
讨论:如果要让上下完全平,该怎么办呢?
媒体显示:三十二等分,对插。比刚才十六等分怎样?(更平更直,简直就是长方形。)
让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成长方形。
媒体显示:
提问:谁能指出圆的边在长方形的什么地方?(学生指,在此作详细的指导。)
[评析:在此,教师结合学生动手操作,充分利用多媒体,将教材中原本静态、抽象的过程动态化、具体化、形象化,给学生留下深刻的“过程性表象”,有效的促进了学生对圆面积公式的理解和掌握。特别是转化中的图形渐变,直观的展示了“化曲为直”过程,为解决问题推出面积公式作了很好的铺垫,有力的突破了教学难点,收到较好的教学效果。]
三、转化成长方形,研究推出圆面积公式——解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了长方形,大家现在能够找到圆面积的计算方法吗?
2、学生合作探究,推导公式。
(1)、讨论探究,出示提示语:
长方形的长相当于圆的 ,宽相当于圆的 ?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)、媒体演示公式推导过程(重点详细讲解。)
长方形的面积= 长 × 宽
圆 的面积=圆周长的一半 × 半径
s = πr(c/2) r
3、揭示字母公式,验证猜想
s = π r2
让学生齐读公式,
提问验证:这说明“s圆”是“r2”的多少倍?(板书:π≈3.14)
提问:要求圆的面积只要知道什么就行?(半径r)
[评析:问题解决后,验证猜想,让学生完整的经历了科学研究的一般步骤,有效的培养了学生的研究性学习的能力。]
四、在实践中巩固——应用问题
1、教学例3
一个圆的半径是5厘米,它的面积是多少平方厘米?
2、练习:
从自己身边找一个圆形物体,请你想办法求出它的面积。
[评析:将数学与生活联系起来,让学生体会到数学是有用的,自己的研究探索没有白费,从而能更有效的激发学生的学习兴趣。]
五、课堂总结,渗透学法——研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考及多媒体的帮助,把圆转化成已经学的长方形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
清华大学吴文虎教授在谈wto与中国教育改革时指出:我们的教学对“是什么,为什么”讲得多,而在“如何做出来”这个环节却远远不够。我想,研究性学习这种新型学习方式正是迎时而生的产物,它会给我们的教育教学注入了新的生命活力,会给我们的民族、我们的国家带来希望。
《圆的面积》教学设计 篇二
教学目标:
1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1.教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2.交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3.教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4.教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转*器?
(2)想象一下自动*器旋转一周后喷灌的地方是什么图形,*的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5.教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1.完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2.完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3.完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4.完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5.作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积=
《圆的面积》教学设计 篇三
一、说教材:
圆是曲线平面图形。《圆》这部分内容是在学生学过了一些常见平面图形的认识,有关平面图形的周长和面积以及在低年级直观认识圆的基础上教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时也渗透了曲线图形和直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决实际简单问题的能力,也为以后学习圆柱、圆锥等知识打好基础。
《圆的面积》是在学生学过了圆各部分名称的认识、圆周长的计算和对平行四边形、三角形、梯形等平面图形面积公式的推导的基础上教学的。圆面积公式的推导本节课的重点和难点。在学生经过推导得出圆的面积计算公式后,就要求他们能利用面积计算公式来计算有关的题目,解决一些简单的实际问题。
教材的组织处理:教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。在引导学生推导圆面积的计算公式时,教材采用实验的办法,先把圆16等分,拼成一个近似的平行四边形,再把圆32等分,拼成一个近似长方形。使学生看到分割的份数越多,拼成的图形就越接近于长方形。当等分的份数达到无限,即把圆平均分成无数份时,拼成的图形就是长方形。然后分析拼成的长方形的长、宽与圆的周长、半径之间的关系,由长方形的面积计算公式推导出圆的面积计算公式s=πr²。然后引导学生观察公式,得出结论:要求圆的面积,必须知道半径,如果半径不知道,就要先求半径。最后要求学生能够利用圆的面积计算公式来解决一些简单的实际问题。
教学目标及理论依据:1、认知目标:通过“几何画板”的操作,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力。
3、情感目标:通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力;同时让学生接触并更能理解极限转化等数学思想方法。
二、说教法:
教学方法设计及理论依据:
1、创设生活化的学习氛围。
围绕真实世界中问题的解决而创设问题情境,利用“武进城区的房子又涨价了”这一社会热点问题,引出开发商征地,要求进行面积核算、地皮估价。引导学生从身边的数学问题入手,激发学生学习积极性,并由学生通过自己的讨论提出问题,引出如何正确计算圆的面积这个学习内容。
2、组织学生自主探究。
(1)引导估算和估价:建议学生利用紧贴在圆外的正方形进行估算付钱,培养学生的估算意识和初步的估算能力。并用“假如你是房地产开发商,你肯不肯付这么多钱?”为问题,激发学生求圆形地皮的精确面积的欲望,帮助学生树立初步的经济意识。
(2)指导网上探究:指导学生网上搜索所需资料,自己利用“几何画板”软件中“圆的面积公式的推导”这一课件推导圆的面积公式,通过观察、操作等实践活动,运用多种感官参与学习活动,接受转化的数学思想,理解和掌握圆的面积公式,并进行合作交流。
3、帮助学生意义建构。
给出未标出圆心的圆,要求学生求出面积。设计“智力大冲浪”的题目,“假如老师给你一根绳子,长31.4米,允许你在大学城附近任意圈一块地,你有几种圈法?你能求出它们的面积吗?你有什么发现?”在复习旧知的同时,又检验新知识的掌握情况。接着提出,“假如这块地真的送给你,你会怎样为自己设计一个美丽的家园?”激发学生利用信息技术进行创造性设计的热情,培养学生应用计算机的能力。同时让他们对各种几何图形进行拼接、组合、优化,从而感知生活中到处都存在数学,生活和数学密不可分。
4、参与课程整合。
(1)利用多媒体计算机网络及“几何画板”软件作为辅助教学手段,帮助学生突出重点、分解难点。(2)留下疑问,“假如这块地真的送给你,你将会怎样为自己设计一个美丽的家园?”一方面激发学生继续使用信息技术的兴趣,培养他们应用计算机的能力。另一方面激发学生进行创新设计的热情。
教学手段及理论依据:
1、书面形式提供给学生搜索策略和课件操作说明,以便学生课上快速查找所需资源,正确操作课件。
2、提供现成的“几何画板”课件——“圆的面积公式的推导”,供学生操作圆面积公式的推导过程。
3、提供计算机供学生网上搜索,动手实验,进行网络交流。
4、提供书本和草稿纸进行有关练习。
三、说学法:
学习方法指导及理论依据:
为了体现学生学习的主动性,教师准备引导学生采用下列方法:
(1)估算法:引导学生估算,培养学生的估算意识和初步的估算能力。
(2)自主探究法:让学生登陆相关网站搜索所需资料,自己利用现成的“几何画板”课件对圆面积进行推导、演示、观察、思考,加深学生对于公式由来的理解和掌握。鼓励学生尝试应用信息技术进行创造性设计,感知几何图形在现实生活中的大量应用,加强数学与社会生活的联系,同时培养学生应用信息技术索取新知识、解决问题的各种能力。
(3)合作交流法:通过合作组成员之间相互演示、相互帮助,提高课堂学习效率,发展学生的集体感、友谊感、同情感。
(4)练习法: 学生利用已学到的面积计算公式来解决生活中的一些简单的实际问题,了解圆面积计算公式在现实生活中的应用。
学法手段及理论依据:
1、要求学生课前预习学习内容,寻找好合作学习伙伴,以便提高课堂学习效率。
2、要求学生登陆相关网站,搜索“几何画板”软件中的现成课件——“圆的面积公式的推导”,自己动手操作圆面积公式的推导过程。
3、利用网络呈现学习成果。
4、合作小组成员进行推导过程的演示,手把手地教会不会推导的学生,使所有学生共同进步,提高课堂教学效率。
5、利用书本和草稿纸进行有关练习。
6,学生提供课前搜集到的生活中有关求圆面积的事例在课上使用。
四、说教学过程:
1、 创设问题情境,激发学生学习兴趣。
利用社会上的热门话题,武进城区的房子又涨价了,请出一位房地产开发商购买圆形地皮,设计了一套圆柱形公寓,给出每平方米地皮的价格是850元,要学生为这块地皮估价。让学生通过讨论、思考,得出:要给地皮估价,还必须知道圆形地皮的面积。
2、组织学生探索,尝试解决问题。(1)引导学生进行估算和估价。建议学生利用紧贴在圆外的正方形进行估算付钱,培养学生的估算意识和初步估价能力。又以“假如你是房地产开发商,你肯不肯付这么多钱?”为问题,激发学生求圆形地皮的正确面积的欲望,帮助学生树立初步的经济意识。(2)、回忆思考,寻找办法。从对三角形、梯形等平面图形的面积计算公式的推导过程的回忆,引出思考问题:圆是否也可以转化成学过的图形来计算面积?(3)、教师利用课件进行操作示范并讲解,让学生知道如何对圆的面积进行推导:拖动点d,把圆4等分,双击“分开”、“拼合”按钮,看看什么变了,什么没有变?再拖动点d,把圆6等分……(4)引导学生网上搜索所需资料。让他们自己利用课件,拖动点d,对圆进行等分、拼合,观察思考:“什么变了,什么没有变?当圆被等分的份数越来越多的时候,圆被转化成了什么图形?当等分的份数达到无限的时候,圆怎么样了”等问题,然后找出圆与长方形之间的对应关系,推导得出圆的面积公式。并以“你还能把圆转化成别的什么图形来进行计算吗?”对学生的进行发散性思维训练。
3、学生合作交流,呈现经验总结。学生通过校园网进行共享,交流学习成果。合作小组成员也可以互相演示、互相帮助。让学生利用网络工具等多种形式进行合作交流,培养他们的合作意识,发展他们良好的人际关系。
4、运用所学知识,解决实际问题。完成开发商征地的正确面积计算和付款计算。要求学生联系生活说说,生活中还有哪些地方也要进行圆面积的计算?设计难易层次不同的练习题(允许小组合作进行问题的解答),培养学生的创新思维能力:为了培养学生应用知识有创意地解决实际问题的能力,我给出未标出圆心的圆,请学生想想怎样求出它的面积?引导学生说出先对折求出直径,或两次对折求出半径,或量出圆的周长,然后再求圆的面积,既复习了旧知,又培养学生的发散性思维能力。针对学生的兴趣,我还设计了“智力大冲浪”的题目:假如老师给你一根绳子,长31.4米,允许你在大学城附近任意圈一块地,你有几种圈法?你能分别求出它们的面积吗?你有什么发现?让学生充分想象,圈出不同的平面图形,并用学过的知识尽量求出各自的面积,让学生通过自己的观察去发现规律:在周长相同的情况下,圆的面积最大。使得复习旧知识的同时,又检验了新知识的掌握情况。
5、联系生活总结,拓展延伸课外。圆的面积计算公式是如何推导出来的?求圆的面积必须知道什么条件?如果不知道该怎么办?然后,我再提出:假如这块地真的送给你,你将会怎样为自己设计一个美丽的家园?一方面培养学生的创新设计能力,激发学生利用信息技术继续探索新知识,进行创造性设计的热情,培养学生熟练应用计算机的能力;同时让他们对各种几何图形进行拼接、组合、优化,从而感知生活中到处都存在数学,生活和数学密不可分。
五、在课堂教学中使用“几何画板”。
1、应用“几何画板”,突出重点,分解难点。
对圆面积公式的推导是本节课的重点和难点。在课堂教学中,我设计了应用“几何画板”这一便捷的交流工具,将学生难以理解、用语言又无法表达得很清楚的圆的面积公式的推导过程、曲线平面图形向直线平面图形转化的过程,以形象、直观、快捷的方式表现出来,大大优化了教学过程,提高了教学效率。
2、应用“几何画板”,能够促使学生主动地学、生动地学,体现了学生学习的自主性。
让学生应用“几何画板”亲自动手操作,对圆进行份数越来越多地等分、拼合,推导出圆的面积公式,能够极大地激发了学生的学习兴趣和学习主动性。学生在应用现成的“几何画板”课件——“圆的面积公式的推导”进行圆面积公式推导时,接受了等分的份数达到无限时,圆被转化成了长方形这一事实;理解和掌握了圆的面积公式的由来;自己发现了生活中的有用数学;进一步了解了怎样用以前学过的解决问题的方法来解决新问题。而且在数学教学中,在应用“几何画板”改变学生的学习方式的同时,还可以更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力,为他们今后的发展打下良好的基础。
3、利用“几何画板”,可以使学生自主地选择学习伙伴和学习结果的交流形式。
学生可以把自己的学习成果在网上发送给教师和其他伙伴,也可以干脆几个人坐在一起演示圆面积公式的推导过程,或者手把手地帮助、指导他们的伙伴进行操作。另外,使用“几何画板”,有利于教师及时地了解学生的学习情况,也有利于学生共同学习、提高课堂学习效率,发展学生间良好的人际关系。
圆的面积教案 篇四
【教学内容】
《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。
【教学目标】
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
《圆的面积》教学设计 篇五
教学目标:
1、用转化的思想使学生能够理解并掌握圆的面积计算公式,学会利用圆的面积计算公式解答简单的实际问题。
2、通过圆的面积计算公式的推导及应用,培养学生知识迁移能力,观察发现能力,分析概括能力和解决实际问题能力。
3、通过本节课的学习,渗透转化数学思想,让学生体会到数学知识之间的内在联系,感受学数学的快乐。
教学重难点:理解圆的面积计算公式的推导过程及应用。
教学思路:直观引入,演示发现,学会应用。
教学过程:
一、激发兴趣,引出概念
1、回忆圆的周长概念及计算公式,引出圆的面积概念。
2、回忆学过平面图形的面积公式,例举某图形面积计算公式的推导过程。渗透转化数学思想,引出学生对圆面积计算公式推导的探究兴趣。
二、点题提出目标
1、圆的面积计算公式的推导。
(1)课件演示将圆平均分成若干份后,拼接成近似长方形的全过程。让学生不仅懂得圆平均分的份数越多,拼接成的图形越接近长方形;还了解到圆转化成近似长方形后形状发生了变化,但面积没有变化。
(2)学生分组尝试(或教师教具演示等)将圆转化长方形的全过程。让学生进一步感受转化的数学思想,并在操作(或观察)发现拼接成的近似长方形的长相当于圆的哪一部分;宽相当于圆的哪一部分。
(3)由长方形面积公式推导出圆的面积计算公式。
(4)小结:在一个圆里,圆的面积与半径有关系,知道了圆的半径就可以求出圆的面积。
2、教学例1题。
(1)出示例题,学生根据圆面积计算公式独立解决,集体评议。
(2)尝试练习,做一做第1题,练习二十四第3题等。
《圆的面积》教学设计 篇六
本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。
1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。
如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的*,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。
2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。
例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。
教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。
但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。
《圆的面积》教学设计 篇七
教学内容:圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:正确计算圆的面积。
教学难点:圆面积公式的推导。
教具准备:多媒体课件,圆片。
学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(2)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
s=πr × r
s=πr2
师小结公式 s=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成做一做的第1、2题。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(cai课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
s=πr×r
s=πr2
以上就是众鼎号为大家整理的7篇《《圆的面积》教学设计》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在众鼎号。